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Abstract

This research advances adaptive interference suppression techniques for air-

borne radar, addressing the problem of target detection within severe interference

environments characterized by high ground clutter levels, noise jammer infiltration,

and strong discrete interferers. Two-dimensional (2D) Space-Time Adaptive Pro-

cessing (STAP) concepts are extended into three-dimensions (3D) by casting each

major 2D STAP research area into a 3D framework. The work first develops an

appropriate 3D data model with provisions for range ambiguous clutter returns.

Adaptive 3D development begins with two factored approaches, 3D Factored Time-

Space (3D-FTS) and Elevation-Joint Domain Localized (Elev-JDL). The 3D-FTS

technique exhibits greater than 15 dB improvement (over 2D-FTS) in Relative Peak

Sidelobe Level (RPSL) using data from the Multi-Channel Airborne Radar Mea-

surement (MCARM) program. The 3D adaptive development continues with opti-

mal techniques, i.e., joint domain methods. First, the 3D Matched Filter (3D-MF)

is derived followed by a 3D Adaptive Matched Filter (3D-AMF) discussion focus-

ing on well established practical limitations consistent with the 2D case. Finally,

a 3D-JDL method is introduced and demonstrates target detection improvement of

approximately 10 dB and 57 dB when compared to 2D-JDL and 2D-FTS, respec-

tively, using an 8× 8 non-uniform rectangular array and eight pulses. Proposed 3D

Hybrid methods extend current state-of-the-art 2D hybrid methods. The initial 3D

hybrid, a functional extension of the 2D technique, exhibits distinct performance

advantages in heterogeneous clutter. The final 3D hybrid method is virtually imper-

vious to discrete interference; an RPSL of -16.15 dB, versus 8.77 dB and 6.56 dB for

the inverse 3D hybrid and 3D extension, respectively, was achieved for a given data

realization. An average RPSL of -9.71 dB with standard deviation of 5.58 dB was

achieved across 500 realizations.
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AIRBORNE RADAR INTERFERENCE SUPPRESSION USING

ADAPTIVE THREE-DIMENSIONAL TECHNIQUES

I. Introduction

The primary objective of this research effort is the advancement of adaptive

interference suppression techniques for airborne radar. The problem is one

of detecting targets within a severe interference environment characterized by high

levels of ground clutter, jammer infiltration, and other strong sources not of inter-

est (termed discrete interferers). Aircraft motion further complicates the detection

problem due to induced velocity and dynamic ground clutter returns, causing them

to occupy a wide range of Doppler frequencies. Often, platform induced clutter

Doppler extends beyond the available unambiguous Doppler band as determined by

the radar’s Pulse Repetition Frequency (PRF). This aliasing regularly occurs for

what are commonly termed low and medium PRF radars.

1.1 Multidimensional Processing

Multidimensional processing is required to solve the detection problem. Fig-

ure 1.1 shows the two-dimensional (2D) clutter Doppler distribution resulting from

platform motion. Casting the problem in the framework of azimuth only beamform-

ing, the clutter ridge projects onto the back wall as shown. The target response

also projects onto the back and lies directly within the mainlobe clutter return. In

this case, the target is buried in clutter and detection is difficult if not impossible.

Similarly, forming a beam only in Doppler results in the interference being projected

onto the left wall. In this case, the target is not only obscured by clutter but also is

completely masked by noise jamming that may be present.
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Figure 1.1: Illustration showing the 2D interference environ-
ment and the need for multidimensional processing. Clutter re-
alization from an 8-element uniform linear array using 8 pulses.

The situation depicted in Fig. 1.1 emphasizes the need for multidimensional

processing. The target is clearly detectable within the 2D azimuth-Doppler plane.

The addition of height discrimination capability promises improved clutter suppres-

sion using a third dimension for adaptivity and enhancing weak target detection in a

severe interference environment. Operation in hostile interference environments and

the advent of stealth technology dictate the need for improved detection capabil-

ity. Furthermore, today’s climate of extremely small scale, surgical warfare demands

technological improvements in radar target detection.

The research effort focuses toward bringing together three interference suppres-

sion methods: height discrimination, statistically adaptive methods, and direct data

domain methods. To date, nearly all published research focuses on 2D Space-Time

Adaptive Processing (STAP) within the azimuth-Doppler plane. This work extends

2D STAP fundamentals into the azimuth-Doppler-elevation hybercube using height
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discrimination techniques. The hypercube offers greater ability to localize clutter

and interference while greatly enhancing target detection capability.

In bringing together these diverse interference suppression approaches, the un-

derlying data 2D model required fundamental changes to incorporate vertical chan-

nel responses. The physical environment served as the model foundation, paralleling

that of [65]. Each environmental radar component was examined in detail, ranging

from thermal noise, clutter, and barrage noise jamming to the actual target returns

themselves.

Upon building an appropriate 3D data model/characterization, the next logi-

cal progression involved implementing traditional statistical STAP methods within

the azimuth-Doppler-elevation space. These methods suppress correlated interfer-

ence and jamming. However, statistical methods are susceptible degradation when

presented with heterogeneous data, a condition discussed in Chapter II. When oper-

ating in these conditions, a different approach is needed to achieve acceptable target

detection.

Direct Data Domain (D3) methods are capable of suppressing uncorrelated

interference. However, they cannot suppress correlated interference to the degree

that statistical methods can. The primary advantage of D3 approaches is reliable

target detection within heterogeneous data environments.

Summarizing, statistical methods suppress correlated interference while direct

data domain methods excel in suppressing uncorrelated interference. Joining these

two methods into a single framework is termed hybridization, the newest class of 2D

interference suppression methods.

Until now, all three suppression methods (D3, statistical, and hybrid) focused

operation within the azimuth-Doppler plane. The benefits of including elevation are

addressed by this work. Figure 1.2 illustrates the historical 2D research progression

and the parallel development of 3D work presented here. This research merges three
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diverse interference suppression methods in a manner identical to the 2D develop-

ment chain, including necessary modifications and developments required to extend

target detection to the azimuth-Doppler-elevation hypercube. The work presented

here offers significant contributions in each area of the 3D research chain.

1.2 Contributions and Document Organization

Figure 1.2 illustrates several diverse research contribution areas in 3D adap-

tive processing. The technical impact of this work is best assessed by independently

examining the contribution areas which serve as a road map to this document. Ta-

ble 1.1 summarizes each research contribution area, explained in detail within the

designated chapter.

This document is organized in a manner paralleling Fig. 1.2. Chapter II offers

relevant background material. Focus is placed on broad areas including the gen-

eral premise of adaptive processing, the definition of homogeneity in relation to the
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airborne radar problem, and more. These principles serve as an overview to the

fundamentals of STAP versus an entire development of the 2D problem and act as

a primer to what follows.

Table 1.1 Contribution Areas.

Chapter Citation Contribution

III [34] The construction of a three-dimensional (3D) airborne radar

model permits simulation of realistic airborne radar data in-

cluding the effects of clutter, thermal noise, jamming, and

targets. The new model has no physical restriction on the

number of vertical array channels and permits reliable gen-

eration of 3D data. Model performance was compared to

measured data and provides identical results.

III [32, 34,35] Implementation of range ambiguous clutter effects in the 3D

airborne radar model. Pervious 2D STAP research has typi-

cally ignored this by not accounting for or incorporating the

effects of range ambiguous clutter1. The impact of range am-

biguous clutter is examined for each of the proposed methods.

IV [31] The introduction of height adaptivity through a factored ap-

proach exhibits a processing improvement on the order of

15 dB with only two elevation channels and measured air-

borne radar data. The method is termed 3D Factored Time-

Space (3D-FTS).

IV [32] A detailed analysis of the 3D-FTS method characterizes per-

formance gains when using a larger number of vertical chan-

nels. Improvement on the order of 25 dB is demonstrated.

1Klemm indicates “almost all available references ignore ambiguous clutter effects” [42, page 11]
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Table 1.1 (continued)

Chapter Citation Contribution

IV [34] The introduction of elevation adaptivity greatly increases the

degrees of freedom, characteristically making this number sig-

nificantly larger than the actual problem rank. Hence, the

possibility exists to reduce computational load and cost by

thinning the array to a more manageable size. Depending

on the array configuration, there is little, if any, performance

penalty incurred.

V [32,34,35] An optimum method is capable of placing null(s) at dis-

tinct locations within the azimuth-Doppler-elevation space.

Therefore, the 3D-FTS approach is suboptimum due to its

factored approach. The optimum 3D matched filter is pre-

sented as a comparison benchmark.

V [35] Since the 3D-FTS approach is suboptimum, the highly re-

garded Joint Domain Localized (JDL) method is extended

from two to three dimensions. This 3D-JDL technique im-

plements statistical adaptivity within the azimuth-Doppler-

elevation beamspace. This method is shown capable of plac-

ing null(s) at distinct points within the space and approaches

optimum performance.

VI The original 2D hybrid formulation is effective at countering

discrete interference sources, e.g., heterogenous data. How-

ever, there is a detection penalty paid when operating with

homogeneous data. Improved 3D approaches are offered and

shown capable of completely mitigating the effect of discrete

interfering sources.
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Table 1.1 (continued)

Chapter Citation Contribution

VI [29] Hybrid results are based on knowing the location of the inter-

ference sources. Determining these locations is not a simple

task due to the computational load of scanning the entire azi-

muth-Doppler-elevation space and finding the local maxima.

The scan resolution required can be reduced with an inter-

polation technique. An initial probabilistic based approach

is developed.

Chapter III begins the 3D research progression of Fig. 1.2. The physical en-

vironment of an airborne radar is used to develop and characterize returns received

by a rectangular array. Of particular importance is the generality of the model pre-

sented. An in-depth discussion of the previous 2D model is not provided since the

3D model developed here collapses to the 2D case. The development of the 3D data

model parallels that of [65] with the necessary modifications. Although not a trivial

extension, the new 3D model was designed with strong similarity to the previous 2D

implementation and represents a more generic architecture.

Parallelling the 2D research efforts of Fig. 1.2, Chapter IV examines factored

processing methods. The 2D Factored Time-Space (2D-FTS) approach is used as a

basis for proof-of-concept. Elevation adaptivity is implemented in a factored manner,

paralleling the overall approach of the original 2D-FTS method.

By definition, factored approaches are suboptimal. Suboptimal performance

stems directly from the sequential (versus combined) nature of the factored approach;
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effective null placement is achieved for particular locations in azimuth, Doppler,

or elevation, but not for particular locations in azimuth, Doppler, and elevation.

Achieving/approaching optimality requires extension to joint domain techniques, i.e.,

techniques operating jointly within the azimuth-Doppler-elevation space instead of

individual spaces. Chapter V presents the 3D Matched Filter (3D-MF) which is the

optimum adaptive processor. Unfortunately, a matched filter is exactly as its name

implies, i.e., a filter that is perfectly matched to the interference scenario under con-

sideration, thereby implying known interference statistics. Real-world application

dictates estimation of interference statistics from available data. This requirement

dictates the need for and development of the 3D Adaptive Matched Filter (3D-AMF)

as presented in Chapter V. Chapter V provides the 3D-AMF practical limitations

and offers a compromise: the extension of the highly regarded Joint Domain Local-

ized (JDL) method [64] into the azimuth-Doppler-elevation hypercube.

The research progress to this point (through the 3D joint method block of

Fig. 1.2) is directed primarily at target detection within homogeneous data. Het-

erogeneous data, defined in Chapter II, is commonly encountered in airborne radar

scenarios. As a matter of fact, the presence of more than one target is, by defini-

tion, a heterogeneous environment. Operation within a heterogeneous environment

is the primary purpose for introducing hybrid methods, the final block in Fig. 1.2.

Chapter VI extends the current hybrid technique into three dimensions. Further-
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more, a new variant providing substantial performance improvement over the current

approach is proposed.

1.2.1 Document Notation and Standardization. This document uses stan-

dard mathematical notation common to published journals. Table 1.2 defines the

notation set used.

! Key ideas and concepts are designated as shown here. These also
show up in the index under the word “comments”.

1.3 Research Applications

STAP techniques have proven to be an effective means for suppressing severe,

dynamic interference within two dimensions: azimuth and Doppler. Although STAP

holds some promise for providing height discrimination capability, very little work

has been done in this area. Practically all previous work, with the exception of some

applications to circular arrays, has been performed with uniformly spaced linear

arrays. Airborne radars commonly encounter severe, dynamic interference. Since a

majority of airborne radars are for military applications, there is a false impression

that STAP techniques only provide benefits to the military. On the contrary, military

applications are merely the starting point for this area of research. Because of USAF

interest in adaptive radar processing, these types of techniques commonly originate

with a specific military application in mind. For example, the Air Force Research

Laboratory (AFRL) funded previous research on a hybrid algorithm formulation [5,
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Table 1.2: General document notation.

Example Description Definition

x, χ, φ Lower case bold letters Vectors

X, Ξ, Φ Upper case bold letters Matrices

x, χ, φ Lower case letters Scalar quantities/variables

R̂ Hat above any variable Estimated parameter or a unit vec-
tor (clear by context)

x̃ Tilde above any variable Transformed parameter or a com-
plex variable (clear by context)

xH Matrix/vector superscript H Hermitian transpose

xT Matrix/vector superscript T Transpose

x∗ Matrix/vector superscript * Conjugation

Xn,m Subscripted matrix nth row, mth column element

xn Subscripted vector nth vector element, nth vector, or
for descriptive purposes (clear by
context)

Re, φt Subscripted scalar Descriptive purposes only, e.g., the
“t” is for target and the “e” for
elevation

E{·} Calligraphic E Expectation Operator
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33] with intended applications including the Airborne Warning and Control System

(AWACS) and Joint Surveillance Target Attack Radar System (JSTARS) platforms.

The civilian digital communications industry’s success in making wireless com-

munication commonplace is rapidly turning the communications spectrum into an

environment of severe, dynamic interference. A typical wireless receiver in a large

city environment must contend with hundreds, perhaps thousands, of transmissions.

All transmissions other than the one of interest may constitute interference. This

problem is currently being countered through the use of available spectral bandwidth

and Code Division Multiple Access (CDMA). However, bandwidth is limited and, as

the use of wireless communications increases, this interference problem will thrust its

way to the communications industry forefront. STAP techniques have been applied

to the communications problem and shown to offer significant performance improve-

ments [44, 48]. The subject research offers specific, and potentially very lucrative,

advantages over previous attempts at applying STAP to the digital communications

problem.

This work focuses entirely on the airborne radar problem, the sponsor’s primary

focus. The previous communications system discussion serves as a reminder that the

work is generally applicable to a broader range of detection and estimation problems.
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1.4 Research Sponsorship

The Air Force Research Laboratory, Sensors Directorate, Radar Signal Pro-

cessing branch (AFRL/SNRT), sponsored this research. AFRL/SNRT conducts ba-

sic research, exploratory and advanced development of low cost solutions for high

performance surveillance sensors. AFRL/SNRT has been charged with responsibil-

ity for enhancing advanced target detection and tracking from long range standoff

airborne, space-based and intelligence, surveillance, and reconnaissance platforms

through mitigation of clutter and jamming. AFRL/SNRT solicited AFIT/ENG’s

support to aid in technical development, characterization, analysis, modeling, and

simulation of advanced radar techniques to achieve their goals.
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II. Two-Dimensional STAP

This chapter examines the role of two-dimensional (2D) Space-Time Adaptive

Processing (STAP) as a precursor to the three-dimensional (3D) research pre-

sented in subsequent chapters. In broadening 2D methods to incorporate elevation

interference suppression, particular emphasis has been placed on developing general

forms of the proposed techniques. This emphasis results in 3D variants equivalent to

current 2D counterparts using a single elevation channel. By taking this approach,

many of the concepts and ideas successful within the azimuth-Doppler plane readily

translate and remain effective in the azimuth-Doppler-elevation hypercube.

The generic 3D development approach works well for statistical techniques.

For this reason, extended development of previous 2D work is not offered here. Un-

fortunately, the deterministic approaches do not generally offer the seamless collapse

from 3D to 2D. Given this limitation, emphasis is placed on explaining the previous

2D deterministic (D3) approaches.

In reviewing this Chapter, careful consideration should be given to how the

research progression shown in Fig. 1.2 builds the overall picture. Given the re-

search goal is advancement of interference suppression techniques with a focus on

the airborne radar problem, project scope addresses three-dimensional interference

suppression method development. The 3D extension requires careful analysis of

nearly all facets of the 2D research progression shown in Fig. 1.2.

Two-dimensional adaptive interference suppression for airborne radar logically

progressed as shown by Fig. 1.2: create a suitable data model, examine factored

interference suppression approaches, examine joint domain interference suppression

approaches, and, finally, given the impact of heterogeneous data, examine hybrid

techniques specifically designed for operation within heterogeneous environments.

After generating the model, this progression could be rephrased in very generic terms

as: easy (proof-of-concept), hard (optimal in benign environments), and hardest
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(optimal while operating in hostile environments). The presentation of the three-

dimensional approaches in this work follows this same progression.

! The actual research time-line began with the introduction of the joint
domain matched filter. However, practical considerations forced investigation
of partially adaptive factored methods and finally partially adaptive joint
domain methods. Given the overall viewpoint taken, it is more appropriate
to introduce ideas in the order chosen.

2.1 Organization

Obviously, previous 2D work plays a significant role in 3D development. The

2D technology base serves as the starting block for this effort. The impact of the

2D base is discussed for each step in Fig. 1.2 with background material presented as

needed.

Discussion begins with a conceptual overview of the radar adaptive processing

problem in Section 2.2. The radar adaptive interference suppression concept is in-

troduced as a general framework. Often, the details of a particular technique can be

overwhelming, drowning out the overall goal. This section serves as a reminder of

the overall goal.

Section 2.3 provides a review of the 2D airborne radar data model. The newly

proposed 3D model presented in Chapter III is based upon this previous work [65].

The previous work is reviewed in this section with primary results reproduced for

subsequent comparison to the 3D model of Chapter III.

Both the 2D and 3D data models are designed to generate homogeneous data.

Although not a specific concept listed in the research chain of Fig. 1.2, the concepts

of homogeneity and heterogeneity are discussed in Section 2.4 and are crucial to

understanding the strengths and weaknesses of the different approaches presented

throughout this research effort.
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A topic which sometimes sparks hot debate in adaptive interference suppression

is the choice between deterministically and statistically based interference estimation

methods. Section 2.5 examines fundamental issues along with the strengths and

weaknesses of each approach. Although this topic is not specifically part of this

research it is inherently embedded within each block of Fig. 1.2.

The final three sections are perhaps the most important to this chapter. They

establish the previous research and present the original 2D framework for comparison

to the 3D framework presented in subsequent chapters. First, factored approaches

are presented in Section 2.6. The section does not review every factored approach

in the 2D STAP arena. Rather, a brief overview is offered along with the important

concepts of the 2D Factored Time-Space method.

Section 2.7 moves away from the suboptimal factored approach and introduces

joint domain techniques. The joint domain concept is explained with emphasis placed

on techniques that are important to later chapters. Specifically, discussion focuses

on the matched filter, adaptive matched filter, and joint domain localized methods.

Finally, Section 2.8 builds upon all concepts under consideration. The hybrid

method serves a very particular purpose and is discussed at length. The original

hybrid formulation is fully developed since it serves as the starting point for the

work in Chapter VI. The new research not only extends the original hybrid approach

to include elevation adaptivity, it also moves far beyond the original limitations by

making some key observations. In developing the new hybrid methods along with

the 3D extension, the previous research is fundamental.

! Because this is a literature review, the symbols established here support
this chapter only. The discussion of the 3D work in subsequent chapters
establishes the symbol set used for the entire work, not the review in this
chapter.
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Figure 2.1: Adaptive weighting within a STAP radar system.

2.2 Conceptual Overview

STAP techniques adaptively combine data from several pulses and elements

with the goal of achieving maximum interference suppression. Figure 2.1 shows a

graphical, fully adaptive STAP representation. This particular method represents

a distinct adaptive weight calculation (wi,j) approach applied to returns from each

element and pulse.

Historically, STAP research focuses on the linear array in an effort to simplify

a complex problem. The weights, indicated by wi,j for all i = 0, . . . , N − 1 and j =

0, . . . ,M − 1 in the figure, are calculated to give a maximum antenna response,

referred to as the mainbeam, at a particular azimuth angle φt and normalized Doppler
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frequency ω̄t while at the same time suppressing interference. For linear arrays, the

number of horizontal antenna elements is denoted N while the number of pulses

being adapted over is M . The time between pulses, or Pulse Repetition Interval

(PRI) is Tr. Normalized Doppler is simply the Doppler shift ft normalized by the

Pulse Repetition Frequency (PRF) fr = 1/Tr, or

ω̄t =
ft
fr
. (2.1)

The weights are applied through multipliers with the weighted returns summed to

form a single output. This output is then applied to a thresholding scheme to

determine target presence. The threshold level is determined by the desired false

alarm probability Pfa and detection probability Pd.

All STAP approaches fall under this basic architecture. Approaches vary from

fully adaptive, where every element and pulse is fully utilized, to partially adaptive

approaches where only a portion of the suppression capability contained in the overall

framework is used. Although many individual variants exist, each method falls into

the general framework of Fig. 2.1.

2.3 Data Model

Adaptive interference suppression begins first by examining the physical en-

vironment and developing a model for the expected data. For 2D work, the model

of [65], as originally proposed by [39], has served this purpose.

The 2D work first establishes an appropriate coordinate system and proceeds

with a detailed examination of nuances associated with the airborne radar problem.

The detailed examination begins with a mathematical transmit waveform model.

Waveform transmission from a single element is characterized with associated losses

due to range attenuation, variations due to target Radar Cross Section (RCS), fre-

quency changes resulting from relative target velocity, and more. The analysis re-
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sults in a mathematical expression describing the return received by a single antenna

channel for a single pulse acting upon a point target/reflector.

Adaptive interference suppression implies the ability to electronically steer a

radar transmit beam, thereby implying the use of a phased array antenna. From the

radar return expression for a single element, single pulse, a framework is generated

to encapsulate the returns from all elements in the antenna array and all pulses

within a Coherent Processing Interval (CPI). Yet, at this point, only the return

from a single scatterer is described. The full radar interference environment is built

around the model for a single scatterer return. Ground clutter is introduced through

the construction of range rings, where each particular ring is divided into individual

patches (scatterers/point targets) having associated random amplitudes designed to

simulate real-world clutter.

Similarly, a barrage noise jammer model is introduced along with thermal

noise effects. Each component (clutter, thermal noise, barrage noise jammer, and

target) characterizes the returns received in an actual airborne radar. Results using

this model compare favorably to measurements taken from actual airborne radar

platforms [34,59].

The 2D model as described in [65] serves as the foundation for Chapter III.

Each step is examined and reformulated to incorporate the rectangular array. Fun-

damental changes in the framework were required in the model, affecting the inter-

ference suppression techniques developed in Chapters IV through VI.

The original 2D model is summarized in the following subsections; this is not

a complete redevelopment of Ward’s 2D work. Rather, sufficient information is

introduced to highlight the differences between the 2D model and the 3D model of

Chapter III.

2.3.1 Physical Geometry. In published 2D work, the radar antenna array

is always assumed linear with uniformly spaced elements at a distance d apart. Each
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Figure 2.2: Uniform linear array geometry (a) and radar platform
geometry (b).

element has a dedicated receiver for mathematical simplicity. The array orientation

is along the x-axis as shown in Fig. 2.2a resulting in an element location vector

d = ndx̂, where n = 0, 1, . . . , N − 1. Consistent with Fig. 2.2b, the vector va

represents the magnitude and direction of the platform velocity. This figure also

shows the corresponding radar platform geometry used by Ward [65].

The unit vector k̂(φ, θ) shown in Fig. 2.2b represents the direction to a single

point of interest (scatterer, target, etc.). Angular variables φ and θ represent the

azimuth and elevation, respectively, to the point of interest. This coordinate system

is related to the Cartesian coordinate system by

k̂(φ, θ) = cos θ sinφx̂+ cos θ cosφŷ + sin θẑ, (2.2)

where x̂, ŷ, and ẑ represent unit vectors along the Cartesian coordinate system ŷ and

ẑ axes. The new coordinate system establishes the common frame used in airborne

radar where targets are described in terms of their azimuth and elevation from the

radar platform.

2.3.2 Transmitted Waveform. Given the previous physical geometry, next

examine the electromagnetic properties of the radar. A Pulsed Doppler (PD) radar is

assumed with target velocity information available to the processor. The sinusoidal
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waveform transmitted by the radar is represented as

s̃(t) = atu(t)e
j(2πfot+ψ), (2.3)

where the complex exponential term with random phase shift ψ represents the si-

nusoidal carrier at frequency fo, at the transmitted pulse amplitude, and u(t) the

envelope function. The notation used is referred to as complex envelope notation.

Envelope function u(t) defines the pulse width and Pulse Repetition Interval

(PRI) characteristics. Rather simplistically, a series of individual pulses is summed

to form the radar transmit pulse train and defines the envelope function

u(t) =
M−1
∑

m=0

up(t−mTr). (2.4)

The fundamental pulse up(t) is time shifted by PRI multiples, mTr. The finite

summation of M terms represents the Coherent Processing Interval, or CPI. This

expression implicitly defines M as the number of pulses in the CPI, allowing calcu-

lation of an adaptive dwell time.

2.3.3 Received Waveform. Continuing with Ward’s 2D development, the

signal received by each antenna element is the transmitted signal with a time delay

τn from the point scatterer (target) to the nth element and a Doppler shift ft due to

relative velocity vt between the target and radar platform1. With these definitions,

the received signal at a single element is

s̃n(t) = s̃(t− τn)ej2πft(t−τn). (2.5)

1The Doppler shift is assumed equal at all antenna elements.
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After inserting the transmitted pulse expression, the received waveform becomes

s̃n(t) = aru(t− τn)ej2πfo(t−τn)ej2πft(t−τn)ejψ, (2.6)

where ar represents the received pulse amplitude and incorporates atmospheric and/or

Radar Cross Section (RCS) attenuation affects.

After down conversion (carrier removal) and matched filtering, the target sam-

ples at the nth antenna element and mth pulse, xnm can be expressed as

xnm = αte
j2πnϑtej2πmω̄t , (2.7)

where the complex random amplitude term αt contains the phase and amplitude

terms shown previously, i.e., αt = are
jψ. The parameter ω̄t represents the normalized

Doppler frequency and ϑt represents spatial frequency, both defined in Section 3.3

on page 62.

2.3.4 Formatting. The received signal on a per element, per pulse basis

serves as the foundation for building the rest of the model. First, create a column

vector containing each antenna element sample at a particular range gate l and pulse

m denoting it xm,

xm = αte
j2πmω̄t

[

1 ej2πϑt ej4πϑt . . . ej2(N−1)πϑt

]T

= αte
j2πmω̄tat(ϑt), (2.8)

where at(ϑt) is the spatial steering vector of length N and the range gate/cell depen-

dence has again been suppressed in the subscript. Using this notation, the incoming

samples can be written as the matrix X,

X =
[

x0 x1 . . . xM−1

]

, (2.9)

21



where the matrix generally corresponds to the range gate/cell of interest.

Since the spatial frequency is a function of the target/scatterer elevation and

azimuth angles, the spatial steering vector can be written as an explicit function of

these variables,

at(θt, φt) =
[

1 e
j2πd
λo

cos θt sinφt e
j4πd
λo

cos θt sinφt . . . e
j2(N−1)πd

λo
cos θt sinφt

]T

. (2.10)

Similarly, the temporal steering vector bt(ω̄t) is defined as the vector of expo-

nentials spanning the M pulses in the CPI,

bt(ω̄t) =
[

1 ej2πω̄t ej4πω̄t . . . ej2(M−1)πω̄t

]T

. (2.11)

The relationship between these two vectors forming the components of the

received target sample matrix is characterized by the Kronecker product, denoted ⊗.
See Appendix A, page 216, for a discussion of its properties. The temporal and

spatial steering vector Kronecker product,

vt(ϑt, ω̄t) = bt(ω̄t)⊗ at(ϑt), (2.12)

is defined as the space-time steering vector vt, where the above equation emphasizes

its normalized Doppler and spatial frequency dependence. Scaling this NM length

vector by a random received amplitude parameter (subscripted with a t for the target

or scatterer) gives

χt = αtvt, (2.13)

where χt is the traditional 2D space-time snapshot for a single target/scatterer.

This NM length column vector χt represents the target/scatterer returns received

by each antenna element (n = 0, 1, . . . , N − 1) due to each transmitted pulse (m =

0, 1, . . . ,M − 1) at a particular range gate/cell of interest l. Relating this Kronecker
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product to the received target sample matrix X illustrates it is simply the stacking

(or concatenating) of the columns of X end-to-end to form the column vector,

χ = vec(X). (2.14)

The vec(·) operator can be found in [43].

Since a single target/scatterer is not the only echo returned to the radar, an

undesired component χu is introduced in the model,

χ = χt + χu. (2.15)

Undesired model components include thermal noise, barrage noise jamming, and

clutter.

2.3.5 Thermal Noise. The only noise assumed present is due entirely to

internally generated receiver thermal noise which is assumed white, a realistic and

common assumption. Therefore, there is no correlation of the noise between pulses

or antenna elements.

Let χn represent the MN × 1 spatial noise snapshot for each antenna element.

The noise space-time covariance matrix Rn is then

Rn = E{χnχHn } = σ2IMN = σ2IM ⊗ IN , (2.16)

where E is the expectation operator, I is the identity matrix with dimension indicated

by the subscript and σ2 is the noise power per element, per pulse. The covariance

matrix shown above serves as the thermal noise component of the overall covariance

matrix R.

! In certain circumstances, thermal noise plays a key role in adaptive
interference suppression. Its presence within the covariance matrix ensures
the matrix is invertible, a key requirement in most STAP approaches.
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2.3.6 Barrage Noise Jammer. Only noise jamming originating from a long

range airborne or ground based platform is considered. The jammer signal received

by each antenna element is analyzed in the same manner as the target signal. Since

the noise jammer is assumed uncorrelated on a pulse-to-pulse basis, but correlated

on an element-by-element basis, the space-time covariance matrix when two jammers

are present is determined as follows

Rj = E
{

χjχ
H
j

}

= R
(1)
j +R

(2)
j

= Im ⊗ σ2ξj
(

a
(1)
j a

(1)H
j + a

(2)
j a

(2)H
j

)

= Im ⊗
(

Φ
(1)
j +Φ

(2)
j

)

(2.17)

where the two N×N matrices Φ
(1)
j and Φ

(2)
j represent the jammer spatial covariance

matrices and ξj is the Jammer-to-Noise Ratio (JNR). They result from taking the

expected value of the received jammer signal across the elements for a particular

pulse,

Φ
(i)
j = E

{

xmx
H
m

}

= σ2ξja
(i)
j a

(i)H
j (2.18)

where i = 1, 2 in the two jammer case or i = 1, . . . , J for J jammers. Extension

to include any number of jammers is straightforward from the two jammer example

just shown.

2.3.7 Clutter. Accurate clutter modeling is perhaps the most critical part

of any airborne radar model. Inaccurate clutter simulation can render all results

useless since clutter is the single, most defining factor in any airborne radar envi-

ronment. In general, clutter may be defined as any unwanted radar echo. However,

clutter in any airborne radar scenario is subject to specific correlation properties

that have been the focus of debate for years. The results of the proposed 3D model

compare favorably to adaptive interference suppression results based on actual air-
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borne radar clutter measurements in the MCARM program [34,59]. Since the focus

of this section is on airborne surveillance radars, ground clutter is the main concern.

The return from an individual clutter patch is identical in form to that of

any target or other scatterer. However, several key differences beyond form play an

important role in the model derivation. First, clutter is distributed in range and

extends to the radar horizon. Second, assuming the Earth’s surface is stationary,

the only induced Doppler shift is due to the airborne platform velocity relative to

the clutter patch.

Using these observations, ground clutter is analyzed using constant range rings

around the aircraft. Further segmentation of the clutter ring results in clutter

patches. Each patch is considered to be located at a constant range and has constant

velocity with respect to the airborne platform. Figures 2.3 and 2.4 show the clutter

ring for the airborne platform. A side view is shown in Fig. 2.3 and a top view of

the clutter ring (with the airborne platform at the center) is shown in Fig. 2.4.

The unambiguous range (Ru) is divided into L range bins (rings of constant

range) and each ring into Nc patches. Given this, the component of the space-time
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snapshot due to clutter is given by

χc =
Nr
∑

i=1

Nc
∑

k=1

αikv(ϑik, ω̄ik) =
Nr
∑

i=1

Nc
∑

k=1

αikb(ω̄ik)⊗ a(ϑik), (2.19)

where αik denotes the random amplitude of the ikth clutter patch and Nr is the

number of ambiguous range rings to the radar horizon.

Due to clutter variability, returns from different patches are assumed uncorre-

lated as shown by

E {αikα∗
i′k′} = σ2ξikδi−i′δk−k′ , (2.20)

where ξik is the Clutter-to-Noise Ratio (CNR) for the patch. Using this fact, the

clutter space-time covariance matrix Rc is derived as

Rc =
Nr
∑

i=1

Nc
∑

k=1

σ2ξikv(ϑik, ω̄ik)v(ϑik, ω̄ik)
H . (2.21)
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Substituting in the 2D space-time steering vector of Eqn. (2.12) and using Kronecker

product simplification properties shown in Appendix A, results in a more explicit

form suitable for comparison to Chapter III results,

Rc = σ2
Nr
∑

i=1

Nc
∑

k=1

ξikb(ω̄ik)b(ω̄ik)
H ⊗ a(ϑik)a(ϑik)H . (2.22)

! It is important to note that, at this point in the model, range ambigui-
ties are incorporated. However, practically all published work involving STAP
ignores range ambiguities. Furthermore, the original 2D work using this 2D
model ignores range ambiguities [65, page 24].

2.4 Homogeneity and Heterogeneity

The concept of homogeneity plays an important role in data generation and

technique evaluation. A discussion of this concept is appropriate at this point. The

2D model as just presented involves correlated clutter generation distributed in range,

i.e., homogeneous data. Actual airborne radar measurements have consistently shown

the radar interference environment also contains various sources of uncorrelated inter-

ference [59]. Hence, real airborne radar scenarios contain heterogeneous interference.

! Heterogeneous data is also referred to as non-homogeneous data in
the literature.

This section discusses the impact of heterogeneous interference and methods

for detecting it. Target detection within range cells containing heterogeneous inter-

ference is the goal of Hybrid STAP techniques. Two-dimensional Hybrid methods

are reviewed in Section 2.8 while three-dimensional advances are presented and eval-

uated in Chapter VI.

It is crucial to understand the Achilles heel of purely statistical approaches.

Specifically, statistical techniques fail when secondary data does not accurately re-

flect the interference statistics in the range cell under test, e.g., in heterogeneous
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Figure 2.5: Range cell selection for homogeneous interference
estimation.

data cases. As one would expect, this situation occurs when the CPI is too long,

allowing the interference to change over the adaptive dwell time. However, situations

commonly encountered in both airborne radar and communications systems result in

heterogeneous data, independent of CPI length. This heterogeneous data occurs in

many practical situations such as airborne target detection over land-sea interfaces,

dense target environments, etc.

For the airborne radar problem, purely statistical STAP methods use neigh-

boring range cells to estimate interference within the range cell under test. In a

communications system, the entire data block is used to estimate the covariance ma-

trix [44]. From the interference estimate, the STAP methods generate an adaptive

interference suppression filter using the interference correlation matrix R, or second-

order statistics. Obviously, this approach works best when the interference statistics

in neighboring range cells accurately reflect the interference statistics in the range

cell under test; this condition is referred to as independent, identically distributed

(i.i.d.) or homogeneous data.

Given i.i.d. data, the selection of neighboring range cells for interference es-

timation is simple. Since all data is homogeneous, a symmetric window of data of

sufficient size, as shown in Fig. 2.5, is selected to support the necessary DOF for

the particular approach being used. Usually, between two and four times the DOF

secondary data samples are used to estimate the interference covariance matrix; two
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times the DOF is Reed’s Rule [17]. The primary range cell represents the cell under

test or the range cell being examined for target presence. Interference suppression

within this range cell is achieved by estimating the interference using a subset of

available range cells. Guard cells are introduced on either side of the range cell un-

der test to avoid corrupting the interference estimate with possible target bleed over.

Heterogeneous data is generically defined as any range cell, or cells, with interference

statistics not identical to the other range cells within the datacube. The most obvi-

ous example is data including a discrete interferer or target. Other examples include

abrupt terrain transitions, e.g., going from sea to land or desert to mountains. Any

interference feature violating the i.i.d. definition serves as an example. The issue of

corrupted interference estimates, e.g., heterogeneous data, first came to light in [15]

which primarily discusses the impact of a desired signal corrupted covariance ma-

trix estimate. The only solution offered is an increase in number of secondary data

vectors to offset the impact and achieve near optimal performance. Only within the

last few years has more emphasis been placed on heterogeneous data detection and

working with heterogeneous data. A brief discussion of this work follows in the next

subsection.

2.4.1 Heterogeneity Detection. The converse of homogeneity, heterogene-

ity, commonly occurs in real-world radar situations. An obvious situation is a strong

aircraft sidelobe return that does not correspond to the radar look direction in either

angle or Doppler, as shown in Fig. 2.6. In this case, the sidelobe return is known as

a discrete interferer. When the radar is looking in a direction other than the discrete

interferer location, as indicated by the mainbeam, the interference can either mask a

smaller mainbeam target response or give a false target indication when a target does

not exist. In a communications system, this latter problem is not characterized as a

“false alarm” but rather bleed over from another conversation or data transmission.

The discrete interference problem is commonly encountered with STAP techniques

due to high array sidelobes. Heterogeneous data causes performance degradation be-
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Figure 2.6: Large discrete interference in-
filtrates the range cell under test.

cause it perturbs the covariance matrix estimate, R̂. To minimize performance loss

due to heterogeneous sample support, a Non-Homogeneity Detector (NHD) [45, 66]

can be used to identify secondary data cells that do not reflect primary data, or range

cell under test, statistics. These data samples are then eliminated from the corre-

lation matrix estimation process when forming R̂ as shown in Fig. 2.7. Again, the

primary range cell and guard cells are not used for interference estimation to avoid

corrupting R̂. In this case, the NHD has resulted in selection of secondary range cells

which are vastly different from those of Fig. 2.5. Selecting the most homogeneous

range cells and excising those not reflecting the test cell statistics results in greatly

improved target detection for the test cell. However, NHDs do not address target

detection within range cells identified as heterogeneous and neighboring range cells

do not possess information about the heterogeneity. Hence, statistical approaches

do not suppress discrete interference in the range cell under test.
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2.5 Interference Estimation: A Fundamental Choice

At this point in the development, a suitable 2D data model has been presented

and a brief discussion of homogeneous data has been offered. The next step is the ac-

tual process of building an interference suppression filter, leading to a choice between

deterministically and statistically based interference estimation methods. The intro-

duction in [53] is perhaps the most interesting encapsulation of filter selection issues.

Strongly slanted towards deterministic approaches, the article offers some interesting

quotations from a variety of sources. Perhaps the most enticing is from [24] which

states, “The assumption of randomness is an expression of ignorance.” Avoiding

the more torrid debate details, this section examines the strengths and weaknesses

of each approach. Although interference estimation is not specifically indentified in

Fig. 1.2, it is inherently embedded within each block.

2.5.1 Statistical Interference Estimation. Statistical STAP techniques en-

joy considerable success because the CPI, or adaptive dwell time, is short enough such

that the interference environment remains relatively stable. The adaptive dwell time

merely describes how long data is collected before calculating a new set of adaptive

weights. Why is this important? Within the adaptive dwell time, the method devel-

ops an interference estimate and calculates the weights required to suppress the inter-

ference. If the interference changes over the adaptivity period, the interference esti-
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mate is corrupted and the resultant filter is not properly matched to the interference

environment. Most previous approaches to the interference estimation problem have

taken a purely statistical viewpoint [11,14,17,20,21,25,26,30,38,39,41,49,51,64,65].

The purely statistical viewpoint is perhaps best understood by thinking in

terms of the typical radar model. The whole purpose behind an airborne radar is to

determine target presence by examining radar returns within successive range cells.

Figure 2.8 shows a three-dimensional representation of the data, or returns, available

to the radar within the CPI.

Each range cell contains data from all N antenna elements, the first datacube

dimension. Adaptivity can be applied over all N elements or merely a subset, de-

pending on the application and computational limitations. The second dimension is

the M pulses within the CPI, or the adaptive dwell time. The number of pulses is

chosen large enough to supply sufficient Degrees of Freedom (DOF) for effective in-

terference suppression. However, choosing M too large increases the adaptive dwell

time, or CPI length, to the point where the interference changes within the CPI. A
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second drawback of choosing M too large is the increased computational load. The

term DOF refers to the number of adaptive weights used. For example, the generic

architecture of Fig. 2.1 is fully adaptive and there are NM total weights, or NM

DOF. The range cells constitute the final 2D datacube dimension. The number of

range cells is primarily a function of specific radar parameters such as pulse width

and PRI.

From data available within the datacube, the interference within the range cell

under test is estimated by averaging a large set of neighboring range cells, termed

secondary data. This estimate is in the form of second-order statistics, i.e., the corre-

lation matrix. The secondary data is assumed to be zero mean, hence the correlation

matrix is synonymous with the covariance matrix. From the covariance matrix R,

classic statistical STAP approaches calculate an adaptive filter that suppresses in-

terference within the range cell under test. This process is repeated for each range

cell.

2.5.2 Deterministic Interference Estimation. Contrary to statistically

based methods, deterministic approaches work only within the range cell under test.

This approach offers one potentially huge advantage over statistical methods. The

advantage is realized in heterogeneous data since discrete interference is fully char-

acterized by the data within the range cell it occurs.

Defined succinctly, heterogeneous environments encapsulate interference sce-

narios where insufficient sample support exists to estimate their statistics. As such,

heterogeneous environments contain correlated and uncorrelated interference. Deter-

ministically based methods begin by co-phasing all expected target returns received

on a per element, per pulse basis with no regard to interference statistical properties.

Subtracting adjacent elements removes the target signal, resulting in a per element,

per pulse interference snapshot. As a consequence of this approach, correlation is not

accounted for and a sort of global interference suppression is offered. However, the
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approach suffers in both homogeneous data and heterogeneous data environments

containing significant correlated interference. These scenarios spurred research into

the newest approach, the hybrid.

Most deterministic methods are factored by nature. The primary advantage

offered by factored deterministic methods is the ability to suppress uncorrelated

interference, the hallmark of heterogenous data. However, these methods lack ac-

ceptable correlated interference suppression capability. The original hybrid formula-

tion [5–7, 33] uses a factored deterministic method as a portion of the overall tech-

nique. As discussed in Chapter VI on 3D Hybrid techniques, the direct data domain

approach used in the original hybrid serves as the keystone for subsequent develop-

ment.

2.6 Factored Methods

Factored approaches represent the most simplistic interference suppression

technique. Rather than work jointly, each domain is operated upon individually.

For 2D factored approaches operating in the azimuth-Doppler plane, factorization

translates into suppressing interference in azimuth and Doppler separately. Unfor-

tunately, this approach suffers from a fundamental limitation – it is incapable of

placing a null at a particular azimuth-Doppler location. Therefore, this interference

suppression class is, by definition, suboptimal.

The value of factored techniques lies in their inherit simplicity. As Chapter IV

details, the benefit of introducing elevation adaptivity is best shown by improving a

method offering marginal 2D detection performance. The 2D Factored Time-Space

(2D-FTS) method [65] was chosen for these reasons. Although 2D-FTS performance

approaches optimal as the number of pulses within a CPI approaches infinity, it is

marginal (at best) for a few pulses and azimuth channels when compared to fully

adaptive joint domain methods.
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2.6.1 Factored Time-Space. The fundamental architecture distinguishing

factored methods is best understood by examining the simple 2D-FTS approach,

which is also known as post-Doppler adaptive beamforming. The incoming sampled

data is first Doppler filtered, localizing/suppressing the clutter as much as possible.

This is accomplished through the matrix

B = b⊗ IN , (2.23)

which provides Doppler filtering to the target bin given b is a steering vector to the

normalized Doppler of interest, e.g., under test. The Kronecker product is applied

to b, essentially a DFT matrix column to extract the appropriate elements of the

space-time snapshot χ. Since the pulses are separated within the data structure by

N samples, the identity matrix is of size N .

Given a Doppler bin of interest, an adaptive filter in azimuth is constructed

based on the interference statistics within this Doppler bin. This final weight com-

ponent,

wa = R̂−1
N a, (2.24)

provides azimuth adaptivity. The N × 1 vector is statistically based and derived

from a true Wiener filter. In conjunction with previous Doppler filtering, the az-

imuth adaptivity completes 2D-FTS. The entire approach can be put into a single

mathematical operation as

y = wH
a B

Hχ. (2.25)

Obviously, the method is adaptive only within the angular (azimuth) domain since

Doppler filtering is achieved with a standard transformation/steering vector. Co-

variance matrix estimate R̂N is estimated by averaging K = 2N secondary data

vectors oriented symmetrically about the target range cell. These secondary data

vectors are taken from the Doppler filtered data, not the raw temporal samples. For

K equalling twice the DOF, performance predictions are within 3 dB of optimal
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(Reed’s rule) [49]. The covariance estimate is simply

R̂N =
1

K

K−1
∑

i=1

BHχiχ
H
i B, (2.26)

where the summation excludes the range cell under test. Output y is then applied

to a threshold detection process based on desired false alarm rate.

Chapter IV illustrates the implementation of elevation adaptivity by adding

another level of factorization. Drastic performance improvements are demonstrated

with a detailed performance analysis of the proposed 3D-FTS technique. The role

of 2D-FTS [65] is fundamental since it serves as the foundation for the proposed 3D

method.

2.7 Joint Domain Methods

Joint domain approaches apply interference suppression within all available

spaces. As a result, these methods are characteristically more complicated.

STAP research has traditionally focused on adaptive techniques employing

statistical methods. These methods range from fully adaptive, using the entire co-

variance matrix, to partially adaptive. Partially adaptive methods primarily differ

in how they provide dimensionality reduction. An optimal approach works jointly in

all adaptive domains allowing null placement at a single location within the domain.

The proposed 3D statistical methods found in subsequent chapters uniquely

collapse to the 2D case for a single vertical channel. For this reason, each statistical

method presented in this section is only covered in limited detail. They are primarily

presented to expose the contributions made by the proposed 3D approaches.

2.7.1 Matched Filter. The optimum filter for airborne radar applications

is well known and designed to continuously maximize detection probability [17].
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The work in [17] further shows this maximization is equivalent to maximizing a

generalized Signal-to-Interference plus Noise Ratio (SINR).

! The equivalence of maximizing detection probability and maximizing
SINR is extremely important. In many cases, the explicit development of a
detection probability expression is difficult. Furthermore, generation of de-
tection probability curves for realistic false alarm probabilities using Monte
Carlo analysis can be quite time consuming. The equivalence allows com-
paring different techniques using SINR, a metric more easily derived and
calculated.

Commonly termed the Matched Filter (MF) or the joint domain 2D-MF, the

optimum filter (wMF ) and its output are given by

ywH
MFχ =

(

R−1v
)H
χ, (2.27)

where R is the covariance matrix of incoming space-time snapshots given by

R = E{χχH}. (2.28)

Of particular interest is correspondence indicating the equivalence of the like-

lihood ratio processor, maximum SINR filter, and Wiener filter [18]. Although actu-

ally published a few months earlier, [18] examines the results of [17] and illustrates

the equivalence to previously published work. All three approaches yield the same

adaptive filter for the case of a non-fluctuating target model.

! Given equivalence between the three filter approaches for the target
model under consideration, the names are used interchangeably. Consistent
with the literature, the filter is commonly referred to as either the MF or the
Wiener filter. The same convention is used here.

The joint domain 2D-MF of Eqn. (2.27) provides a comparison benchmark for

all 2D techniques since it is the optimum approach. Chapter V illustrates the 3D

Matched Filter (3D-MF) based on the work of [17]. The 3D-MF provides optimum
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performance and serves as the performance benchmark for techniques developed in

this work.

2.7.2 Adaptive Matched Filter. The primary drawback to 2D-MF im-

plementation is the requirement for known covariance. Unfortunately, interference

statistics are not known a priori and must be estimated from available data. In the

2D Adaptive Matched Filter (2D-AMF) implementation [49], the known covariance

matrix R is replaced by the Maximum Likelihood Estimate (MLE), yielding a filter

output of the form

y =
(

R̂−1v
)H

χ. (2.29)

This extension provides the framework necessary for implementing adaptive interfer-

ence suppression in an actual airborne radar. However, the MLE introduction into

the Wiener filtering processing adversely impacts performance due to the fact that

it is an estimate rather than a known quantity.

Reed addresses the performance degradation [49] and notes the covariance ma-

trix estimate is itself a random variable. Hence, the Wiener filter output SINR using

the MLE for covariance, i.e., the AMF, is random. Reed continued the analysis

and developed a performance loss expression associated with an inaccurate covari-

ance estimate. From this analysis came the infamous Reed’s rule, “if one wishes

to maintain an average loss ratio of better than one-half (less than 3 dB), at least

K = 2MN−3 ≈ 2MN samples of data are needed.” This rule-of-thumb established

the necessary framework for adaptive interference suppression implementation in ac-

tual airborne radars. However, further complications arise in real-world applications

including threshold determination issues, availability of sufficient secondary data,

availability of i.i.d. (homogeneous) data, and computational load.

First, the original 2D-AMF formulation results in an output y dependent on

the interference environment. The original formulation implies target presence is

determined by thresholding this output. As pointed out by [41], no rule is given for
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determining the threshold value. Furthermore, no predetermined threshold can be

generated for a given false alarm probability because the interference environment

is constantly changing. These observations led to the Generalized Likelihood Ratio

Test (GLRT). The GLRT test is covariance matrix independent and attains the

highly desirable Constant False Alarm Rate (CFAR) property. This test allows

establishment of a predetermined threshold for a given false alarm rate. Other

CFAR test statistics have been developed. In particular, the AMF CFAR test was

developed independently by [51] and [21]. The GLRT and AMF CFAR represent

the most commonly used in STAP literature.

Unfortunately, the CFAR test statistic developments did not relieve all the

2D-AMF restrictions. The method still requires inverting an MN ×MN covariance

matrix estimated using > 2MN secondary data samples.

The second problem of sufficient secondary data can be sidestepped to a certain

degree. Although the 2MN product commonly exceeds the available data in an

actual airborne radar, a variety of methods can alleviate the requirement. One

idea involves diagonal loading [20] while other approaches include using the actual

covariance matrix structure (block Toeplitz) or developing a structured covariance

estimator [13].

An even larger problem in covariance estimation occurs when using heteroge-

neous data. The covariance matrix MLE requires 2MN i.i.d., i.e., homogeneous, data

samples. As research progressed, this limitation began cropping up with the first

mention in [15]. The impact of using heterogeneous data and corrupted interference

estimates has been previously discussed.

Finally, one major issue remains with using the 2D-AMF. The approach re-

quires inverting aMN×MN matrix, where the space-time productMN is typically

very large. The computational cost associated with the inversion typically precludes

the method from real-time operation. For this reason and the ones already discussed,

research efforts have migrated toward partially adaptive methods. Essentially, par-
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tially adaptive methods sacrifice usable DOF to make filter implementation more

feasible.

2.7.3 Joint Domain Localized. Numerous partially adaptive techniques are

available for addressing the adaptive interference suppression problem, each with

its own inherent advantages and disadvantages. Again, the purpose here is not to

discuss each method in detail, but rather to maintain focus on work directly relevant

to the 3D advances presented in subsequent chapters.

One of the most elegant joint domain partially adaptive techniques is the 2D

Joint Domain Localized (2D-JDL) approach [64]. This method illustrated the ad-

vantages of working in beamspace, i.e., the radar angle-Doppler domain, rather than

the space-time domain. Several advantages were highlighted. Particularly important

is the ability to easily scale the covariance matrix size to reduce dimensionality and

alleviate computational issues. The dimensionality reduction also provides inherent

advantages for reducing susceptibility to heterogeneous data. For these reasons, the

first 2D hybrid formulation [5–7,33] used this technique for statistical adaptivity.

Conceptually, 2D-JDL is extremely simple. The method is well suited to prac-

tical implementation and, as will be shown in the hybrid discussion, provides max-

imum design flexibility. The 2D-JDL adaptive processing technique is encapsulated

as

vHT
(

THRT
)−1

THχ = wH
2DT

Hχ, (2.30)

where interference covariance matrix R is of dimension MN ×MN and reflects the

covariance between the planar array (spatial sampling) and temporal samples. The

2D adaptive weight vector w2D operates on the transformed data THχ, hence the

method is a joint domain or beamspace approach. Figure 2.9 illustrates the ideal

2D-JDL process.

Transformation matrix T of (2.30) provides a conversion from element-time

space to azimuth-Doppler space. This matrix transforms the data to a localized
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Figure 2.9: Block diagram illustrating ideal 2D-JDL. The
transformation is shown only for the range cell under test, all
data is transformed. Due to steering vector orthogonality (ideal
case), the target is localized to the LPR center bin.

region within the transform domain, where “focused” adaptivity is implemented.

The 2D transformation matrix to the Localized Processing Region (LPR) is given

by,

T =
[

b(ω̄−1) b(ω̄0) b(ω̄1)
]

⊗
[

a(φ−1, θt) a(φ0, θt) a(φ1, θt)
]

. (2.31)

The T of (2.31) corresponds to a 3×3 LPR and represents the ideal transformation.

! The transformation matrix role is crucial to subsequent work. The
sole purpose is transforming to beamspace, hence any method achieving this
transformation is suitable. This concept is key to the idea behind hybrid
techniques.

Generically, the LPR size is ηa× ηb making T of dimension MN × ηaηb, where
ηa ≤ N represents the size in azimuth and ηb ≤ M represents the size in Doppler.

Bounding each LPR dimension ensures the interference covariance matrix across the

region remains non-singular. LPR size is variable and obviously scenario depen-

dent; interference problems of higher-order require a larger LPR to achieve results

approaching the 2D-AMF. The LPR covariance matrix is found by

RLPR = E
{

THχχHT
}

, (2.32)
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and is of dimension ηaηb×ηaηb corresponding to a potential ηaηb ≤MN DOF (weight

vector w2D length). The weights (Wiener filter) are calculated using the transformed

steering vector,

w2D = R−1
LPRT

Hv. (2.33)

The conventional Maximum Likelihood Estimator (MLE) of the interference covari-

ance within the LPR is substituted for RLPR in the estimated interference case.

Consistent with Reed’s rule, the required secondary data support for the MLE is

2ηaηb to achieve performance within 3 dB of the known covariance case [49].

Building upon the 2D-JDL work, the 3D-JDL method is developed in Chap-

ter V. The necessary modifications are developed successively with appropriate

comparisons to the original approach. Again, previous 2D work serves an intricate

role in qualifying the 3D advancements.

2.8 Hybrid Methods

Hybrid methods were borne out of a basic realization. Given the ability to

detect heterogeneous data, a fundamental question arose – how can targets be de-

tected in regions declared heterogeneous? The impact of heterogeneous data on tar-

get detection within homogeneous locations was effectively mitigated through various

techniques involving prudent secondary sample support selection. Yet, there was no

answer to the question posed. Consequently, the advent of the first hybrid technique

occurred [5–7,33].

The original 2D hybrid is founded on the 2D-JDL approach, where a trans-

formation is necessary to apply interference suppression in the azimuth-Doppler

beamspace. In the original 2D-JDL formulation [64], the ideal transform is used.

For simulated data, the ideal transform is a set of steering vectors or columns of the

Discrete Fourier Transform (DFT) matrix. In this ideal world, a target is localized

to a single azimuth-Doppler bin and the localized adaptivity region in beamspace is
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easily scaled. Subsequent research [4, 6–8, 10] found that real-world antenna array

effects resulted in performance degradation. A more appropriate transform was the

actual measured array steering vectors, containing mutual coupling effects, array

element mismatch effects, etc.

A side benefit of research on improving the transformation process was the

realization that the transformation could be used for other purposes. Instead of

using the transform merely as an avenue to reach the azimuth-Doppler beamspace, it

could be used to simultaneously suppress uncorrelated interference. This realization

represented the birth of hybrid interference suppression techniques.

The original hybrid approach has been applied to the Ground Moving Target

Indication (GMTI) problem and shown to offer substantial performance gains [1–3,9].

However, no subsequent work has been done on the original technique to improve

its performance or address its limitations.

The literature devoted specifically to hybrid methods is relatively small due to

the newness of the concept. Chapter VI expands on the original method through

incorporation of elevation adaptivity. The first stage of the original 2D Hybrid

suffers from the drawbacks of using a factored approach. Chapter VI expands the

concept of hybrid processing by offering a technique with substantial processing

benefits and performance improvements over the original approach. The role of the

original concept is significant since it serves as the cornerstone for the improvements

and complete redesign. A review of the 2D hybrid method is offered in the follow

subsections.

2.8.1 Hybrid Deterministic Approach. A unique adaptive array property

is its ability to steer (physically or virtually) the receive antenna mainlobe to a

desired look direction while simultaneously placing deep pattern nulls in the inter-

ference direction(s). Pattern null placement in the interference direction is achieved

automatically without extensive a-priori interference knowledge. Classic statistical
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techniques achieve interference suppression using an interference covariance matrix.

This matrix is typically estimated using secondary data obtained from range cells

neighboring the range cell under test. Statistical techniques fail when secondary

data statistics do not accurately reflect interference statistics in the range cell under

test, e.g., in a heterogeneous data environment. Heterogeneous data conditions occur

in many practical situations such as airborne surveillance over land-sea interfaces,

dense target environments, etc.

A NHD can identify secondary data cells containing interference that does not

reflect primary data statistics and minimize performance loss due to heterogeneous

sample support [45, 66]. The heterogeneous data samples are then eliminated dur-

ing covariance matrix estimation. However, NHDs do not support target detection

within range cells identified as heterogeneous. Given neighboring range cells do not

possess information about the non-homogeneity, statistical techniques cannot sup-

press discrete interference in the range cell under test. The following review describes

an adaptive technique for countering discrete interference in the primary range cell.

The statistical technique’s inability to counter heterogeneities in the range cell

under test motivates research into deterministic or direct data domain techniques.

These techniques only use primary range cell data, eliminating sample support prob-

lems associated with statistical approaches. This particular research field has only

recently emerged with a primary focus on one-dimensional spatial adaptivity [47,54].

This section introduces a factored two-dimensional direct data domain technique re-

formulated from earlier non-statistical attempts at adaptive processing. Researchers

have developed a true two-dimensional direct data technique [55], perhaps superior

to that presented here. However, it has its own limitations and is not discussed here

because it lacks relevance to this work’s primary focus.

Consider the linear array of equally spaced, isotropic point sensors shown in

Fig. 2.10. Each of the N elements receives returns corresponding to M transmitted

pulses per CPI. This space-time data is used to decide between target presence or
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Figure 2.10: Linear array of isotropic point sensors.

absence at a given azimuth look direction φ = φt and normalized Doppler frequency

ω̄ = ω̄t. The received data for a particular range cell can be written as a N ×M
matrix X, where Xn,m represents complex returns at the nth element due to the mth

pulse. Data matrix X is a sum of signal, external interference, and thermal noise

components and essentially represents a cut of the 2D datacube in Fig. 2.8. Using

the desired look direction and velocity (φt, ω̄t), signal matrix S can be written in the

same matrix form of X using the Kronecker product ⊗ as follows:

S = ξta⊗ bT = ξtab
T , (2.34)

a =
[

1 za z
2
a . . . z

(N−1)
a

]T
, (2.35)

b =
[

1 zb z
2
b . . . z

(M−1)
b

]T

, (2.36)

za = ej
2π
λ
d sinφt , (2.37)

zb = ej2πω̄t , (2.38)

where ξt is the signal amplitude and d is the distance between two adjacent elements.

Vectors a and b form the spatial and temporal steering vectors, respectively. It is

important to note that target returns from an azimuth angle and/or velocity other

than the desired look azimuth/velocity are effectively discrete interferers. Ideally,

target detection should be declared only if the target return identically matches the

look direction and velocity.
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Equation (2.35) indicates the signal progresses by a constant phase za from

one element to the next for each pulse. Therefore, the signal component cancels out

of the Xn,m− z−1
a Xn+1,m term, leaving only interference components. Entries in the

M × (N − 1) matrix C, defined to be

















X0,0 − z−1
a X1,0 X1,0 − z−1

a X2,0 · · · XN−2,0 − z−1
a XN−1,1

X0,1 − z−1
a X1,1 X1,1 − z−1

a X2,1 · · · XN−2,2 − z−1
a XN−1,2

...
...

...
...

X0,M−1 − z−1
a X1,M−1 X0,M−1 − z−1

a X2,M−1 · · · XN−2,M−1 − z−1
a XN−1,M−1

















(2.39)

are composed of interference terms only.

! The matrix C is analogous to the transpose of its 3D extension A
on page 177. The convention used here matches the original development
in [5–7, 33]. Unfortunately, it adds unnecessary complexity since the outer
product must be expressed as CTC∗ instead of the more conventional AAH .

Consider the scalar expressions

G = wH
a aN−1a

H
N−1wa, (2.40)

I = wH
a C

TC∗wa, (2.41)

where aN−1 is the vector comprising the first (N − 1) entries of steering vector a.

The term G in Eqn. (2.40) represents the power gain in the look direction due to

weights wa. The I in Eqn. (2.41) represents residual interference power. Notice

that matrix C is defined such that the element phase progression appears across

columns rather than the rows, forcing the transpose operation when applying the

weight vector in I. The hybrid work in Chapter VI formulates a 3D version of this

matrix in a manner reflecting traditional STAP techniques, removing the need for

a transpose and simplifying the development. The direct data domain technique
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obtains the set of weights maximizing the difference between the two terms, i.e.

max
||wa||2=1

[

G− κ2I
]

= max
||wa||2=1

wH
a

[

aN−1a
H
N−1 − κ2CTC∗

]

wa. (2.42)

The constraint ||wa||2 = 1 guarantees a finite solution and the constant κ term serves

as a sidelobe control parameter.

Using the Lagrange multiplier method, the weight vector maximizing G− κ2I
in Eqn. (2.42) is the eigenvector corresponding to the largest eigenvalue of the matrix

aN−1a
H
N−1 − κ2CTC∗. This weight vector constitutes the spatial adaptive weights

and is length (N − 1), representing a one DOF loss in the spatial domain. This loss

compares favorably with other non-statistical techniques where close to one-half the

DOF are lost [54].

An optimum value for κ has never been determined. Clearly, choosing κ = 0

eliminates the interference term. The adaptive weight vector then corresponds to

the steering vector aN−1, corresponding to maximum sidelobe control at the expense

of interference suppression. Conversely, if κ → ∞ the interference term dominates

to the point where the mainbeam may not be retained.

In the temporal domain, the signal progresses by the same phase zb from one

pulse to the next at each element. Therefore, the signal component cancels out in

terms such as Xn,m − z−1
b Xn,m+1. A formulation paralleling Eqn. (2.39) through

Eqn. (2.42) can be used to obtain a (M − 1) length temporal weight vector wb. The

composite NM length space-time adaptive weight vector is then given by

w (φt, ω̄t) =





wb (ω̄t)

0



⊗





wa (φt)

0



 . (2.43)

The zeros appended to the spatial and temporal weight vectors represent lost DOF

in space and time. Using this adaptive weight vector, the statistic used for detection
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via threshold comparison at angle φt and normalized Doppler ω̄t is given by

χ(φt, ω̄t) = wHvec (X) , (2.44)

where vec (·) stacks the columns of X into a length NM × 1 vector [43].

The above formulation effectively side-steps the high sidelobe problems associ-

ated with previous direct data domain techniques [56] and resultant signal estimates

are free of heterogeneous effects. However, direct data domain techniques in general

fail to suppress correlated interference to the degree possible with statistical STAP

techniques.

Unfortunately, the deterministic method as developed here has some draw-

backs. The primary limitation is that it is a factored approach. Recently, a joint

deterministic approach was introduced [55]. The new method still incurs a significant

loss in DOF as inherent to the underlying framework used. Furthermore, the general

limitation of deterministic approaches is not addressed: the method is incapable of

suppressing correlated interference to the degree offered by statistical methods.

2.8.1.1 Similarity to Interferometric Clutter Erasure. The determin-

istic technique used in the original hybrid formulation and reviewed in Section 2.8.1,

conceptually resembles a method independently developed and referred to as In-

terferometric Clutter Erase (ICE). The factored elevation adaptivity implemented

in 3D-FTS is similar to ICE. The ICE technique is designed for ground clutter

elimination/cancellation on the basis of height discrimination. As a stand-alone

technique, initial research efforts using a simple ICE technique showed +10 dB of

clutter suppression with two elevation channels [67]. Similarly, the research efforts

of Chapter IV show +15 dB improvement using two elevation channels. Expanding

the ICE technique in 3D-FTS to more elevation channels offers considerably more

improvement.
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Prior to the invention of ICE, the only discriminate available for discriminating

airborne targets from ground clutter was motion (using Doppler and/or Space Time

Adaptive Processing, STAP). The use of ICE is in addition to motion discrimina-

tion and improvements provide much greater (deeper) sub-clutter visibility/target

detectability. The original ICE approach is an interferogram in its complex form,

ej(r1−r2), for the purpose of co-phasing ground return signals in two interferometric

channels. After the data phase in one channel is matched to the other channel, for

signals reflected from the ground, signals in the two interferometer channels are sub-

tracted, effectively cancelling ground clutter returns. However, signals reflected from

targets above the ground are not cancelled since their returns are not co-phased by

the interferogram phase factor [19].

Some residual clutter energy remains after co-phasing and interferometric chan-

nel subtraction. The residue results from the fact that within a given range/cross-

range resolution rod, not all clutter is at exactly the same height and co-phasing is

not perfect for all scattering sources. As range resolution and/or cross-range reso-

lution improve, there is less height variation within a given resolution rod and ICE

cancellation improves.

Another source of relevant literature involved a simple version of ICE, called

Adaptive Clutter Erasure (ACE), which employed no Doppler beam sharpening.

Simulations of this elementary version of ICE provided 10 dB of clutter cancellation

in hilly terrain [67]; these favorable results foretold the great potential of ICE when

used in concert with Doppler, STAP, and other clutter suppression techniques.

2.8.2 Hybrid Statistical Approach. This section presents a STAP approach

achieving benefits of both direct data domain and statistical methods. The hybrid

approach uses the deterministic technique as a pre-filter to suppress discrete inter-

ferers present in the range cell under test using a process illustrated in Fig. 2.11.
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Figure 2.11: 2D hybrid technique block diagram.

The technique serves to provide an adaptive transformation between the space-time

and angle-Doppler domains.

Every STAP technique estimates the signal component in the desired look

direction (angle and Doppler). STAP techniques can generally be viewed as an

adaptive transformation to this particular angle and Doppler. Creating a set of

look angles and Doppler frequencies allows the STAP technique to perform a func-

tion similar to the Fast Fourier Transform (FFT). It must be emphasized that this

transformation is non-invertible and results in some information loss. However, the

information loss may be beneficial in that discrete interferers may be suppressed

within the range cell under test using subsequent direct data domain processing.

The hybrid technique adaptively processes space-time data in two stages. The

first stage is the direct data domain adaptive transformation detailed in Section 2.8.1.

The first stage output lends itself to application of a post-Doppler, beamspace statis-

tical technique forming the second stage adaptive processing. An enhanced 2D-JDL

version [10,64] has been used as the second stage. The 2D-JDL technique suppresses

interference in a LPR of the angle-Doppler domain. Figure 2.11 shows the two-stage

hybrid technique block diagram.
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Mathematically, the transformation to a predetermined LPR is accomplished

through a matrix operator T. The angle-Doppler data is given by x̃ = THvec (X).

The steering vector is transformed in the same manner. A sample T for a 3×3 LPR

is

T =
[

w−1,−1 w−1,t w−1,1 wt,−1 wt,t wt,1 w1,−1 w1,t w1,1

]

, (2.45)

where wi,j corresponds to a weight vector with mainbeam at φi and ω̄j and is equiva-

lent to w (φi, ω̄j). For the general structure of this equation, the weight vector w−1,t

has a mainbeam corresponding to an azimuth angle φ one bin below the LPR cen-

ter azimuth and normalized Doppler equal to the LPR center normalized Doppler.

Bin size is determined by design with limitations consistent with standard sampling

concepts.

Because the 2D-JDL technique only operates within a localized region of the

angle-Doppler domain, fewer DOF are used and secondary data support requirements

are correspondingly reduced [64]. These advantages are carried over to the hybrid

technique.

2.8.3 Numerical 2D Examples. The results presented here summarize

recent 2D work in analyzing and comparing 2D-JDL, direct data domain, and 2D

Hybrid technologies [5–7]. The hybrid technique is tested on data generated using

the 2D physical model presented by Jaffer [39] and Ward [65], and implemented by

Roman and Davis [52]. Comparison of adapted beam patterns associated with JDL,

the direct data domain, and the hybrid techniques illustrate the motivation for, and

improved performance due to, the hybrid technique.

The adapted antenna pattern plots presented in Figs. 2.12 through 2.17 rep-

resent mean pattern values for over 200 independent realizations. Vertical bars

represent the standard deviation over the 200 trials. This method was necessitated

because the direct data domain technique is non-statistical and is based solely on
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a single data set/realization. Operating with known covariance to obtain an ideal

pattern, as in 2D-JDL or other statistical techniques, was not an option.

The simulation includes the effects of clutter, white noise, two barrage noise

jammers, and a discrete interferer. The simulated linear antenna array consists of

N = 18 elements and a CPI length of M = 18 pulses. Two 40 dB jammers are

located at azimuth angles of 45◦ and −20◦. The discrete interferer is simulated by

injecting a 40 dB target having the same normalized Doppler as the look Doppler but

at a different azimuth angle of φ = −51◦. The look direction is set to an azimuth

angle of φt = 0◦ and normalized Doppler ω̄t = 1/3. The 2D-JDL technique uses

three angles and three Doppler frequencies centered around the look direction for a

total LPR size of NDOF = 9 DOF. The number of secondary data vectors used to

estimate the covariance matrix is set to 2NDOF = 18.

Figures 2.12 and 2.13 illustrate the standard 2D-JDL antenna patterns [64]

along target azimuth and Doppler. Figure 2.12 shows the technique has placed

distinct nulls (approximately 60 dB below peak) in the two jammer directions. The

discrete interferer does not contribute to the covariance matrix estimate and therefore

is not nulled by the technique. Figure 2.13 shows a deep null at ω̄ = 0 that effectively

suppresses mainlobe clutter. The mainlobe is formed at the Doppler look direction

of ω̄t = 1/3.

Antenna patterns for the 2D direct data domain technique are presented in

Figs. 2.14 and 2.15. It bears repeating that a direct data domain technique uses only

data from the range cell under test for adaptation and hence does not require any

secondary data. Figure 2.14 shows the direct data domain technique is effective in

countering a discrete interferer in the range cell under test. The adapted angle pat-

tern shows a distinct null (approximately 60 dB below peak) in the discrete direction

of −51◦. However, Figs. 2.14 and 2.15 also highlight a direct data domain technique

limitation; jammer nulls are not as deep as in the case of 2D-JDL (approximately

45 dB below peak). The null near ω̄ = 0 in the clutter spectrum is also not as deep

52



-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90

-80

-70

-60

-50

-40

-30

-20

-10

0

PSfrag replacements

φ

P
(φ
,ω̄

t)

D
isc
re
te

In
te
rfe

re
r

J
a
m
m
e
r
#
1

J
a
m
m
e
r
#
2

Figure 2.12: Standard JDL tech-
nique antenna pattern at target
Doppler.
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Figure 2.13: Standard JDL tech-
nique antenna pattern at target az-
imuth.
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Figure 2.14: Direct data domain
technique antenna pattern at target
Doppler.
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Figure 2.15: Direct data domain
technique antenna pattern at target az-
imuth.
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Figure 2.16: Hybrid technique an-
tenna pattern at target Doppler.
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Figure 2.17: Hybrid technique an-
tenna pattern at target azimuth.
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(approximately 35 dB below peak), i.e., the mainbeam clutter is not as effectively

suppressed. Also, there is a slight shift in the mainbeam clutter null, essentially

making it a minimum at ω̄ = 0 rather than the distinct null of statistical algorithms.

This shift results from basing weight determination on a single data set rather than

a statistical sampling.

Results presented in Fig. 2.12 through Fig. 2.15 provide the motivation for

hybrid technique development. The direct data domain technique can be used as the

first stage to screen out discrete interferers. A statistical technique, such as 2D-JDL,

can then be used to suppress correlated interference. Figures 2.16 and 2.17 show

antenna beam patterns resulting from the hybrid technique. Figure 2.16 shows the

hybrid technique combines advantages of both statistical and non-statistical adaptive

processing; the adapted azimuth pattern exhibits deep nulls at −51◦ , −20◦ and 45◦,

approximately 60 dB, 52 dB, and 58 dB below the peak, respectively. Likewise,

Fig. 2.17 shows the adapted pattern has a deep null at ω̄ = 0 resulting in effective

nulling of mainbeam clutter.

2.9 Summary

This Chapter introduced the current state-of-the-art in 2D STAP techniques.

In developing the literature review, attention is focused on ideas and methods rele-

vant to 3D advances presented in subsequent chapters. The review is presented in a

manner following the 2D research progression of Fig. 1.2, allowing reliable compari-

son of 3D advances to previously published 2D work.

Each portion of the review serves as a stepping stone into the following chap-

ters. Section 2.2 provides a 2D STAP overview to remind the reader of the generic

radar interference suppression goal and the fundamental architecture assumed with

a phased array radar. The overview was purposely broad and is intended to serve as

a conceptual blueprint.
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Moving beyond concept into detail, Section 2.3 presented the 2D mathematical

model representing actual radar returns from a uniform linear array antenna. The

model incorporates significant airborne radar factors with the inclusion of receiver

thermal noise, ground clutter, and barrage noise jamming. As previously mentioned,

results of the 2D model, and proposed 3D model in Chapter III, compare well with

measured airborne radar data.

The interference model discussion imposed certain assumptions. Based on

these assumptions, the data model provides a homogeneous interference environment

characterization. This concept is crucial when comparing to measured data since

real airborne radars commonly encounter heterogeneous data. These ideas forced

the discussion of homogeneous and heterogeneous data in Section 2.4. The two data

types are compared and contrasted with a careful review of associated impacts.

Several sections are devoted to characterizing the interference environment, the

first step in designing effective adaptive interference suppression techniques. Inter-

ference estimation plays a key role in building a suppression approach and leads to

fundamental differences between deterministic and statistical methods. Section 2.5

examined related issues and analyzed the strengths and weaknesses of each approach.

Constructing actual interference suppression filters requires yet another funda-

mental choice between two primary STAP approaches: factored and joint domain.

Section 2.6 defined the factored approach and examined the 2D-FTS method. The

2D-FTS approach is extended to 3D in Chapter IV, making the discussion funda-

mental to qualifying 3D performance.

By definition, factored approaches are suboptimal. Consequently, the 2D re-

view progressed into a discussion of the optimal joint domain methods presented

in Section 2.7. A variety of reasons force further examination of suboptimal joint

domain approaches. Focus is maintained on the 2D-JDL method since it serves as a

foundation to the proposed 3D-JDL method of Chapter V.
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The final section provides motivation for exploration and development of the

hybrid concept, an approach that reaps benefits of several contrasting approaches

and melds them into a single framework. The work presented in Section 2.8 is key

to Chapter VI since it represents the initial hybrid concept.
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III. Three-Dimensional Radar Model

The most important factor in evaluating the performance of any interference

suppression method is building an accurate data model. For this reason, this

is the first step in the research chain of Fig. 1.2. As the figure shows, the 3D

extensions of this work parallel the 2D development process.

This chapter addresses the extension of a common 2D radar data model used in

STAP analysis to include elevation elements and their associated returns. This addi-

tion represents a significant change in the underlying framework and requires devel-

opment beginning with the transmitted waveform structure. The general approach

of the 3D physical model is extended from Ward [65], although it was originally

offered by Jaffer [39].

3.1 Airborne Radar System

The airborne radar of interest is Pulsed Doppler (PD). The general antenna

array structure can be considered as P banks of uniformly spaced N element linear

arrays located along the x-axis and stacked along the z-axis as illustrated in Fig. 3.1.

The elements are uniformly spaced in azimuth and elevation at inter-element dis-

tances dx and dz, respectively, which are not necessarily equal. An arbitrary vector

describing the location of the npth element is given by

dnp = ndxx̂+ pdzẑ, (3.1)

where n = 0, 1, . . . , N − 1, p = 0, 1, . . . , P − 1, and x̂ and ẑ are unit vectors.

This work focuses on a side-looking radar with a velocity vector parallel to the

positive x-axis 1.

1The velocity vector is allowed to deviate from this orientation for cases requiring accurate
characterization of aircraft crab.
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Figure 3.1: Research focuses on a planar antenna array oriented in the x-z plane.

The coordinate system of Fig. 3.2 is established for the radar using common

elevation (θ) and azimuth (φ) angle definitions referenced to radar boresight. By

convention, the radar elevation angle θ is negative when measured from radar bore-

sight towards the ground. In the reference cartesian coordinate system2, this angle

is measured from the y-axis in the direction of positive z-axis, i.e., negative angles

represent downward direction. Similarly, radar azimuth angle φ is measured from

the antenna array boresight with positive angles measured from the positive y-axis

towards the positive x-axis, i.e., towards the nose of the aircraft. Figure 3.3 clearly

shows the azimuth angle in a two-dimensional illustration.

Conversion from radar angular coordinates (θ, φ) to cartesian coordinates ori-

ented to the antenna array is given by [65]

k̂(θ, φ) = cos θ sinφx̂+ cos θ cosφŷ + sin θẑ, (3.2)

2In the cartesian coordinate system, the origin (0,0,0) is located at the array origin.
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where the hat (̂ ) symbol above bold lower case variables denote unit magnitude

vectors. Unit vector k̂ serves two purposes. First, it describes a unit vector in the

direction of a target located at (θ, φ) in terms of the cartesian coordinate reference

system. Second, it provides a transformation from the radar angular coordinate

system to the cartesian coordinate system. Each cartesian component in Eqn. (3.2)

is essentially a projection of unit vector k̂ onto the respective cartesian unit vector

x̂, ŷ, and ẑ. The radar angular coordinate system is very similar to the spherical

system, however, the angles are referenced to different axes.

3.2 Transmitted Waveform

Given the general geometric radar description of Section 3.1, the radar elec-

tromagnetic properties are next examined. Assuming a PD radar, target velocity

information is available. For the purposes of this model, assume there is a receiver

connected to every antenna element. Other assumptions will be introduced as needed

in the development.

The sinusoidal transmitted radar waveform is modeled mathematically as

s̃(t) = atu(t)e
j(ωot+ϕ), (3.3)

where the complex exponential and random phase shift ϕ represent a sinusoidal

carrier at frequency ωo, at is the transmitted pulse amplitude, and u(t) is the real

valued envelope function. The envelope function defines the pulse width Tp and

Pulse Repetition Interval (PRI) characteristics. A series of individual pulses up(t)

are summed to form the radar pulse train, yielding an envelope function of the form

u(t) =
M−1
∑

m=0

up(t−mTr). (3.4)
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The fundamental pulse up(t) is time shifted by multiples of the PRI, Tr. The sum-

mation of a finite number of M terms represents the Coherent Processing Interval

(CPI). This expression implicitly defines M as the number of pulses in the CPI.

Care must be taken in distinguishing between the CPI and the coherent inte-

gration time. The output of any STAP method is described generically by y = wHχ,

where w is the adaptive weight vector and χ is the incoming space-time snapshot

(discussed later in detail). This expression implicitly indicates a coherent integration

time since the inner product of the weight vector and space-time snapshot is sim-

ply the weighted sum of incoming data samples, a form of integration. For reduced

dimension algorithms, this integration time may be smaller than the CPI length.

The CPI defines how much data is available to the adaptive processor, or

adaptive algorithm, for forming an adapted pattern. Obviously, a smaller CPI al-

lows rapid modifications to the antenna pattern in response to the changing envi-

ronment. However, making the CPI too small can provide insufficient information

about the environment interference statistics, producing poorly formed antenna pat-

terns. Conversely, making the CPI too large can result in a slower response and

possible statistical changes within the CPI. Consequently, CPI length selection is a

fundamental design consideration in any STAP system.

The transmit signal amplitude at is defined to capture the desired pulse energy.

Therefore, the fundamental pulse energy Eu is normalized to one over the PRI,

Eu =

∫ Tr

0

|up(t)|2dt = 1. (3.5)

Consequently, the total energy in a single pulse Ep meets the definition for at,

Ep =

∫ Tr

0

|s̃(t)|2dt = a2t . (3.6)
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From this expression, the waveform energy over one CPI is easily determined by

integrating over the CPI length. Since the focus of STAP methods is the response

and pattern after one CPI, it is customary to consider only the signal transmitted

within one CPI as being the entire transmitted signal. Hence, the energy within one

CPI is synonymous with the transmitted signal energy Et,

Et =

∫ MTr

0

|s̃(t)|2dt =Ma2t =MEp. (3.7)

3.3 Received Waveform

The signal received at each antenna element is the transmitted signal (Eqn. (3.3))

with a time delay from the target to the npth element, τnp, and a Doppler shift3 ft due

to the target’s relative velocity vt between the target and the platform, ft = 2vt/λo,

s̃np(t) = s̃(t− τnp)ej2πft(t−τnp). (3.8)

Inserting the transmitted pulse expression of Eqn. (3.3) gives

s̃np(t) = aru(t− τnp)ej2πfo(t−τnp)ej2πft(t−τnp)ejϕ, (3.9)

where ar represents the received pulse amplitude. The ar parameter is introduced

because the atmosphere and target Radar Cross Section (RCS) attenuate the trans-

mitted pulse amplitude. Hence, ar is typically much less than at; if ar were large,

there would be no need adaptive for processing!

If the Doppler shift is greater than the Pulse Repetition Frequency (PRF) , e.g.,

ft > fr, then the target velocity is ambiguous due to aliasing, commonly referred

to as Doppler foldover and illustrated in Fig. 3.4. Once the target Doppler shift

has increased past the first PRF line at fr, the radar can no longer unambiguously

3The Doppler shift is assumed equal at all antenna elements.
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determine target velocity. For this reason, target Doppler frequency is normalized

by the PRF,

ω̄t =
ft
fr

= ftTr. (3.10)

Using the normalized Doppler frequency ω̄, a quick glance determines if the Doppler

shift is unambiguous (ω̄ < 1) or ambiguous (ω̄ > 1).

Total signal delay (τnp) to the npth element equals the sum of the delay from

the npth element to a reference element (first element to receive the return signal)

τ ′np and a delay equal to the round trip time to the target τt,

τnp = τt + τ ′np. (3.11)

Considering the physical geometry of the scenario, τnp is a function of target elevation

angle θt, azimuth angle φt, and range Rt. The round trip time to the target (τt) is
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a function of the propagation velocity c and range Rt,

τt =
2Rt

c
. (3.12)

The differential delay from the reference element to the npth element (τ ′np) equals

the physical separation distance divided by c. The physical separation distance is

merely the projection of a unit vector in the direction of the target onto a vector

describing the location of the npth element. These operations result in

τ ′np = −
k̂(θt, φt) ¦ dnp

c
, (3.13)

where the center dot (¦) represents the vector dot product, equivalent to the inner

product. Substituting from Eqn. (3.2) and Eqn. (3.1) and simplifying gives the

differential delay from the reference element to the npth element as

τ ′np = −(cos θt sinφtx̂+ cos θt cosφtŷ + sin θtẑ) ¦ (ndxx̂+ pdzẑ)

c
(3.14)

=
−ndx cos θt sinφt − pdz sin θt

c
. (3.15)

Note that for a single row of elements (P = 1) dz = 0 and the expression collapses to

that derived in previous 2D work for a uniformly spaced linear array. Correspond-

ingly, the phase delay from the reference element to the npth element is calculated

as

−ωoτ ′np = 2πfo

(

ndx cos θt sinφt + pdz sin θt
c

)

. (3.16)

For simplicity, define the target spatial frequency as

ϑt =
k̂(θt, φt) ¦ dnp

λo
(3.17)
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The element location vector dnp lies in the npth element direction as shown in Fig. 3.3

and originally introduced in Eqn. (3.1). Repeated here, this vector is

dnp = ndxx̂+ pdzẑ, (3.18)

where dx and dz are the inter-element distances for the azimuth and elevation ele-

ments, respectively, n = 0, 1, . . . , N − 1, and p = 0, 1, . . . , P − 1. Using this, the

target spatial frequency becomes

ϑt =
ndx cos θt sinφt + pdz sin θt

λo
. (3.19)

To simplify subsequent developments, ϑt is broken into two components given by

ϑx =
dx cos θt sinφt

λo
(3.20)

ϑz =
dz sin θt
λo

. (3.21)

These components represent the x-axis and z-axis spatial frequencies, respectively.

Notice that both quantities are unitless. Substituting back into the phase delay term

of Eqn. (3.16) yields

−ωoτ ′np = 2π (nϑx + pϑz) . (3.22)

3.3.1 Simplification. Using expressions and definitions developed in Sec-

tion 3.3, the received signal of Eqn. (3.9) can be simplified into a framework easier

to analyze. Since each antenna element is assumed to have its own receiver and

matched filter, the following derivation follows the block diagram shown in Fig. 3.5.

First, substitute the npth element delay into the received signal expression,

s̃np(t) = aru(t− τt − τ ′np)ej2π(fo+ft)(t−τt−τ
′
np)ejϕ. (3.23)
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Since the delay from the reference element to the element of interest τ ′np is much

smaller than the pulse width, it can be ignored in the waveform envelope function

u(t),

s̃np(t) = aru(t− τt)ej2π(fo+ft)te−j2π(fo+ft)τte−j2π(fo+ft)τ
′
npejϕ. (3.24)

Now take a closer look at the third exponential term, which incorporates the phase

delay, and write it in terms of spatial frequencies using Eqn. (3.22),

e−j2πfoτ
′
np = e−jωoτ

′
np = ej2π(nϑx+pϑz). (3.25)

Substituting this expression back into s̃np(t) of Eqn. (3.23) results in

s̃np(t) = aru(t− τt)ej2π(fo+ft)te−j2π(fo+ft)τte−j2πftτ
′
npej2π(nϑx+pϑz)ejϕ. (3.26)

A final observation is in order to permit further simplification. The second

and third exponential terms of Eqn. (3.26) are not a function of time, hence they

are constant expressions for a given s̃np(t). Therefore, they can be accounted for in

the random phase term without loss of generality. This final simplification gives the

following received signal,

s̃np(t) = aru(t− τt)ej2π(fo+ft)tej2π(nϑx+pϑz)ejϕ. (3.27)
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At this point, this signal is applied to the receiver processing chain shown in Fig.3.5.

The first step is down conversion and matched filtering.

3.3.2 Down Conversion and Matched Filtering. As Fig. 3.5 illustrates,

the received signal is down converted using a complex exponential. This operation

translates the received signal down to an Intermediate Frequency (IF) assumed as

baseband for this development,

s̃np(t) = aru(t− τt)ej2πfttej2π(nϑx+pϑz)ejϕ. (3.28)

The next receiver step is matched filtering, thereby introducing a form of the Time-

Frequency Autocorrelation Function (TFACF). The TFACF is defined in [22,46,68]

and its form is highlighted as it naturally appears in the development. The matched

filter output is simply the convolution of the filter impulse response with the received

signal,

xnp(t) =

∫ ∞

−∞

s̃np(τ)h(t− τ)dτ, (3.29)

where s̃np(t) represents the received signal at the npth antenna element, as derived in

this chapter, and h(t) is the matched filter impulse response. The radar match filters

the received signal on a pulse-by-pulse basis. Therefore, the filter impulse response

is

h(t) = u∗p(−t). (3.30)

Derivation of the matched filter output follows. First, substituting from Eqns. (3.28)

and (3.30) and simplifying,

xnp(t) =

∫ ∞

−∞

aru(τ − τt)ej2πftτej2π(nϑx+pϑz)ejϕu∗p(t− τ)dτ (3.31)

= are
j2π(nϑx+pϑz)ejϕ

∫ ∞

−∞

M−1
∑

m=0

up(τ − τt −mTr)u∗p(t− τ)ej2πftτdτ. (3.32)
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In an effort to simplify further, a change of variables is performed within the integral.

First, let β = τ − τt − mTr which implicitly redefines τ in the integral as τ =

β + τt +mTr with dβ/dτ = 1. The change of variables and some minor rearranging

results in

xnp(t) = are
j2π(nϑx+pϑz)ejϕej2πftτt

M−1
∑

m=0

ej2πftmTr
∫ ∞

−∞

up(β)u
∗
p (β + τt +mTr − t) ej2πftβdβ. (3.33)

There are two very important realizations evident at this point in the derivation.

First, the exponential after the summation represents normalized Doppler frequency

since ftTr = ω̄t. Second, the integral term is the TFACF for a single transmitted

pulse within the pulse train of M pulses; the magnitude of the TFACF squared is

the radar ambiguity function [58]. The value of this TFACF is dependent on the

Doppler tolerance of the waveform, however, some easy generalizations can be made

to further reduce the expression into a more manageable form.

First, interest is focused on the range cell under test (a target is assumed

present at this point). The target range cell corresponds to a range delay t equal to

τt+mTr for the m
th pulse. Furthermore, assume the waveform is relatively tolerant

to Doppler shift for the velocities of interest. This assumption may not be valid for

spaceborne platforms. Given these realizations, the TFACF of the transmitted pulse

equals one because of the unit energy constraint placed earlier in the development

(all the received signal energy is captured in the ar term). Mathematically, this

statement is equivalent to

∫ ∞

−∞

up(β)u
∗
p (β) e

j2πftβdβ ≈
∫ ∞

−∞

up(β)u
∗
p (β) dβ = 1. (3.34)
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Given these observations, the scalar received signal for a scatterer/target given

a particular range and the npth element is

xnp = are
jϕej2π(nϑx+pϑz)

M−1
∑

m=0

ej2πmω̄t , (3.35)

where the constant phase term ej2πftτt is incorporated into the random phase ejϕ.

Equation (3.35) actually represents a form of coherent integration due to summing

across the M pulses within the CPI. The adaptive processing framework to be es-

tablished will include this coherent integration. Therefore, only the return from the

mth pulse is considered and given by

xmnp = αte
j2π(nϑx+pϑz)ej2πmω̄t , (3.36)

where the return amplitude ar and random phase ejϕ have been combined into a

single complex amplitude term (αt) corresponding to the scatterer/target. This

expression represents the signal response after transmission, reflection from an ar-

bitrary scatterer/target at a particular range cell, down conversion, and matched

filtering.

3.4 Formatting Radar Returns

Equation (3.36) is in a format describing the signal response at each element of

the planar array for each pulse within a CPI. The next step is to arrange the returns

for all elements and pulses into a format suitable for linear algebra operations.

The adaptive processor has MNPL returns available to it, one for each of the

M pulses, N azimuth elements, P elevation elements, and L range gates. Equa-

tion (3.36) includes a range gate dependence since the return corresponds to a range

delay of τt. To gain a suitable format for the incoming set of radar returns, first
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define the vector

xmp = αte
j2πmω̄tej2πpϑz

[

1 ej2πϑx · · · ej2π(N−1)ϑx

]T

(3.37)

containing all returns from the N azimuth elements. Now define the column vector

of Eqn. (3.37) as a spatial (azimuth) steering vector a,

a (ϑx) =
[

1 ej2πϑx · · · ej2π(N−1)ϑx

]T

. (3.38)

For consistency with previous work in 2D STAP, the previous convention is used to

define a temporal steering vector b,

b (ω̄t) =
[

1 ej2πω̄t · · · ej2π(M−1)ω̄t

]T

. (3.39)

At this point, the algebraic structure is consistent with previous 2D STAP work.

However, more data is now available to the adaptive processor through the introduc-

tion of elevation elements. To incorporate this data into the new 3D structure, spatial

steering vector e is introduced to account for returns from the elevation elements,

e (ϑz) =
[

1 ej2πϑz · · · ej2π(P−1)ϑz

]T

. (3.40)

Using these definitions, a single column vector containing all returns is constructed.

First, the vector containing N returns for all azimuth elements at the pth elevation

row and mth pulse is given as

xmp = αte
j2πmω̄tej2πpϑza (ϑx) . (3.41)

Using the Kronecker product, write the NM returns from pth elevation row as

xp = αte
j2πpϑzb (ω̄t)⊗ a (ϑx) . (3.42)
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The Kronecker product and its properties are defined in Appendix A. Notice from

the definition of z-axis spatial frequency in Eqn. (3.21) that if there are is only

one elevation element (P = 1) the expression collapses to the space-time snapshot

definition given in [65] and reviewed in Eqn. (2.13). The final operation uses the

Kronecker product once again to obtain a single 3D space-time snapshot χt at the

lth range cell given by

χt = αte (ϑz)⊗ b (ω̄t)⊗ a (ϑx) , (3.43)

where the 3D steering vector is

e (ϑz)⊗ b (ω̄t)⊗ a (ϑx) . (3.44)

The structure of Eqn. (3.44) is consistent with the 2D space-time steering vector of

Eqn. (2.12).

The role of steering vectors as transformations in STAP is explained in Ap-

pendix B. These vectors are analogous to the discrete Fourier transform. Also,

concepts of over- and under-sampling are explained in terms of sin-theta space with

an emphasis on grating lobe characteristics.

3.5 Element Patterns

The next step logically continues with the development and establishment of

models for clutter, jamming, and noise. However, a couple of key elements are nec-

essary for building these models, including element patterns and the array pattern.

For this work, the antenna array elements are assumed identical, i.e., each

element has identical voltage and power patterns denoted by f(θ, φ) and g(θ, φ) =

|f(θ, φ)|2, respectively.
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When extending to 3D to include elevation elements, the element pattern must

now reflect both elevation and azimuth dependence. Although previous work did

propose using element and array patterns to incorporate elevation functionality, the

elevation dependence is typically assumed away or neglected. For this work, full

elevation and azimuth antenna patterns are implemented for proper attenuation of

range ambiguous clutter. A simple cosine pattern in both elevation and azimuth is

used with a backlobe attention factor. Previous work [65] used a cosine pattern in

azimuth only, treating the elevation pattern as unity. The 3D element pattern is

given by

f(θ, φ) =







cos θ cosφ −90◦ ≥ φ, θ ≥ 90◦

be cos θ cosφ 90◦ ≥ φ, θ ≥ 270◦.
(3.45)

The azimuth (φ) and elevation (θ) angles are in radar coordinates. The factor be is the

element backlobe weighting factor and is chosen in this work to provide a backlobe

level that is 30 dB lower than the mainlobe. Figure 3.6 shows the 3D element pattern

in radar coordinates as a function of azimuth and elevation. Figure 3.7 shows the

identical response transformed to cartesian coordinates.

3.6 Spatial Array Factor

Derivation of the spatial antenna array pattern is fairly simple using the two

spatial steering vector expression. Care us taken here to distinguish this as the spatial

array pattern since the final STAP adapted pattern includes temporal adaptivity

as well. The development of the spatial array factor is primarily important for

generating models of the clutter and jamming environment which do not require

generation of the temporal array factor. At this point, no temporal processing is

applied; only spatial processing to form a transmit beam in a given azimuth and

elevation direction.

The (θ, φ) dependence embedded in ϑx and ϑz explicitly defines the element-

by-element weighting necessary to steer the array response to the desired azimuth
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Figure 3.6: 3D element pattern in radar coordinates.
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and elevation angle. As such, the spatial array factor is merely the sum of all the

weights over the array,

W (θ, φ) = [e (ϑz)⊗ a (ϑx)]T 1. (3.46)

A more conventional notation equivalent to the above expression and matching lit-

erature [12,61] is

W (θ, φ) =
P−1
∑

p=0

N−1
∑

n=0

ej2πpϑzej2πnϑx . (3.47)

Again, the goal is to simplify this expression into something more manageable and

intuitive. First, use an expression for the partial sum of a geometric series for finite

N and P . Obviously, there is a finite number of elements so this requirement is not

overly restrictive. One such sum is found in [50] and generally defined as

n
∑

l=0

al =
1− an+1

1− a , (3.48)

where a 6= 1. Applying the simplification to Eqn. (3.47) results in

W (θ, φ) =

(

1− ej2πPϑz
1− ej2πϑz

)(

1− ej2πNϑx
1− ej2πϑx

)

. (3.49)

This expression can be further simplified by factoring the complex exponentials as

W (θ, φ) =
ejπPϑz

ejπϑz

(

e−jπPϑz − ejπPϑz
e−jπϑz − ejπϑz

)

ejπNϑx

ejπϑx

(

e−jπNϑx − ejπNϑx
e−jπϑx − ejπϑx

)

. (3.50)

Gathering like terms and recognizing the components in the form of Euler’s equation

yields

W (θ, φ) = ejπ(P−1)ϑzejπ(N−1)ϑx
sin (πPϑz)

sin (πϑz)

sin (πNϑx)

sin (πϑx)
. (3.51)

At this point, it is convenient to substitute in ϑx and ϑz from Eqn. (3.20) and

Eqn. (3.21), respectively. This final substitution highlights the azimuth and elevation

74



angle dependence in the array pattern,

W (θ, φ) = ej
πdz
λo

(P−1) sin θej
πdx
λo

(N−1) cos θ sinφ×

sin
(

πdz
λo
P sin θ

)

sin
(

πdz
λo

sin θ
)

sin
(

πdx
λo
N cos θ sinφ

)

sin
(

πdx
λo

cos θ sinφ
) . (3.52)

3.6.1 Application of L’Hôpital’s Rule. For certain values of θ and φ, the

array pattern becomes indeterminate. By applying L’Hôpital’s rule, the appropriate

array response can be determined in these directions. First examine the case when

φ = 0. The array pattern is now an indeterminate 0/0 form. Next, apply L’Hôpital’s

rule by taking the derivative of the numerator and denominator and evaluate the

expression.

To simplify this seemingly arduous task, write the array pattern as

W (θ, φ) =
ABCD

EF
, (3.53)

where

A = ej
πdz
λo

(P−1) sin θ (3.54)

B = ej
πdx
λo

(N−1) cos θ sinφ (3.55)

C = sin

(

πdz
λo

P sin θ

)

(3.56)

D = sin

(

πdx
λo

N cos θ sinφ

)

(3.57)

E = sin

(

πdz
λo

sin θ

)

(3.58)

F = sin

(

πdx
λo

cos θ sinφ

)

. (3.59)
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Taking the derivative of the numerator with respect to φ results in

d (ABCD)

dφ
=
dA

dφ
BCD + A

dB

dφ
CD + AB

dC

dφ
D + ABC

dD

dφ
. (3.60)

Before proceeding, evaluate A, B, C, and D at φ = 0,

A(φ = 0) = ej
πdz
λo

(P−1) sin θ (3.61)

B(φ = 0) = 1 (3.62)

C(φ = 0) = sin

(

πdz
λo

P sin θ

)

(3.63)

D(φ = 0) = 0. (3.64)

Clearly, the only non-zero term from the numerator derivative of Eqn. (3.60) is the

last one since D = 0 at φ = 0. The non-zero derivative term is

dD

dφ
= cos

(

πdx
λo

N cos θ sinφ

)

πdx
λo

N cos θ cosφ. (3.65)

Evaluating this derivative at φ = 0 results in

dD

dφ

∣

∣

∣

∣

φ=0

=
πdx
λo

N cos θ. (3.66)

Constructing the non-zero term for the numerative derivative evaluated at φ = 0

results in

ej
πdz
λo

(P−1) sin θ sin

(

πdz
λo

P sin θ

)

πdx
λo

N cos θ. (3.67)

Now apply the same process to the denominator. Following the same method,

the derivative of the denominator evaluated at φ = 0 becomes

E
dF

dφ

∣

∣

∣

∣

φ=0

= sin

(

πdz
λo

P sin θ

)

πdx
λo

cos θ. (3.68)
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Taking the ratio of numerator and denominator terms gives the solution for the array

pattern response at φ = 0,

W (θ, 0) = Nej
πdz
λo

(P−1) sin θ
sin

(

πdz
λo
P sin θ

)

sin
(

πdz
λo

sin θ
) . (3.69)

The same process is used to find the array pattern response at θ = 0 and is given by

W (0, φ) = Pej
πdx
λo

(N−1) sinφ
sin

(

πdx
λo
N sinφ

)

sin
(

πdx
λo

sinφ
) . (3.70)

The array response at W (0, 0) is found using the same method, and was de-

termined to be

W (0, 0) = NP. (3.71)

The normalized 3D spatial array factor is plotted in Fig. 3.8 for radar coordinates.

A different visualization is obtained after using rectangular coordinates as shown

in Fig. 3.9. The latter figure shows contour lines on the bottom floor of the three-

dimensional plot corresponding to cuts in the array pattern. As plotted, the array

pattern does not have any backlobe attenuation applied. Therefore, the pattern is

symmetrical and has a grating lobe at 180◦ in both azimuth and elevation.

3.7 Spatial Antenna Array Pattern

The spatial antenna pattern is the spatial array factor scaled by the element

pattern, given the identical element assumption. The spatial antenna array pattern

is simply given by

G(θ, φ) = W (θ, φ) |f(θ, φ)|2 . (3.72)

Planar array pattern plots for an 8 × 8 element array (including element pattern

effects) are shown in Figs. 3.10 and 3.11.
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Figure 3.8: Normalized 3D spatial array factor (W ) in radar
coordinates for an 8×8 element array (no backlobe attenuation).

Figure 3.9: Normalized 3D spatial array factor (W ) in carte-
sian coordinates for an 8× 8 element array (no backlobe atten-
uation).
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Figure 3.10: Normalized 3D antenna array pattern for an 8×8
element array in radar coordinates.

Figure 3.11: Normalized 3D antenna array pattern for an 8×8
element array in cartesian coordinates.
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3.8 Noise Model

For the 3D noise model component, only internally generated receiver noise

is assumed present. Given every array element has its own receiver, there is noise

present at all times. Furthermore, assuming a separate receiver for each channel

dictates the noise is mutually uncorrelated on an element-by-element basis. Given

noise sample ynmp on the nth azimuth element, pth elevation element, and mth pulse,

the expected value of the noise across pulses is

E
{

ynimpjy
∗
nkmpl

}

= σ2δni−nkδpj−pl , (3.73)

where δni−nk is a Kronecker delta function defined in Eqn. (3.74) and σ2 is the noise

power per element, per pulse. It is convenient to define σ2 = 1, however this quantity

can also be calculated from the noise power spectral density and the radar bandwidth

as NoB. The Kronecker delta is defined as

δni−nk =







1 i = k

0 otherwise.
(3.74)

The noise is mutually uncorrelated temporally as well. This assumption is

valid for a PRF much less than the waveform bandwidth, given the bandwidth is

also much less than the carrier/transmit frequency, i.e., fr ¿ B ¿ fo. For an

airborne radar scenario, this is a reasonable assumption. Therefore, the expected

value of two pulse samples is very similar to that of two different elements,

E
{

ynmjpy
∗
nmkp

}

= σ2δmj−mk
. (3.75)

Given these correlation properties for the noise model, the correlation prop-

erties of the incoming noise signal can be determined. A received noise signal is

characterized in the same form as any other target signal and its development is the
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same data model of this chapter. Given this point, the noise space-time snapshot χn

is used and the structure of its correlation matrix determined by taking the expected

value of its outer product,

Rn = E
{

χnχ
H
n

}

. (3.76)

Using the form of Eqn. (3.43) and substituting yields

Rn = E
{

[e (ϑz)⊗ b (ω̄t)⊗ a (ϑx)] [e (ϑz)⊗ b (ω̄t)⊗ a (ϑx)]H
}

. (3.77)

Application of Eqn. (A.2) in Appendix A simplifies the expression to

Rn = E
{

e (ϑz) e
H (ϑz)⊗ b (ω̄t)b

H (ω̄t)⊗ a (ϑx) aH (ϑx)
}

. (3.78)

Furthermore, using the fact the noise samples are mutually uncorrelated on a pulse-

by-pulse and element-by-element basis allows for the following simplification,

Rn = σ2IP ⊗ IM ⊗ IN . (3.79)

The Kronecker product of these three identity matrices is simply another identity

matrix of size MNP ×MNP . Hence, the noise covariance matrix simply becomes

Rn = σ2IMNP . (3.80)

! Thermal noise plays a key role in adaptive interference suppression.
Its presence within the covariance matrix ensures the matrix is invertible, a
key requirement in most STAP approaches.

3.9 Barrage Noise Jammer Model

The jamming model only includes barrage noise jamming. The jamming signal

remains correlated across the array although there is decorrelation from pulse-to-
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pulse. The received jammer power spectral density at one element is derived from

the one-way radar equation

Jo =
Sjg(φ, θ)λ

2
o

(4π)2R2
jLr

, (3.81)

where Lr represents the receiver losses and Sj the jammer effective radiated power

spectral density. Hence, the jammer to noise ratio (JNR) at one element is

ξj =
Jo
No

, (3.82)

where No is the receiver noise power spectral density. The jamming model is devel-

oped consistent with [65] and begins by first considering the spatial snapshot for the

mth PRI. However, the model is now extended to include elevation elements and the

3D mathematical framework must accommodate these elements. This accommoda-

tion results in the mth spatial snapshot being written as

xm = αme (ϑz)⊗ a (ϑx) , (3.83)

where e and a are in terms of the jammer’s azimuth angle φ and elevation angle θ.

The parameter αm represents the jammer amplitude on the mth pulse. By writing

the signal in this manner, i.e., as a spatial snapshot, it is relatively easy to include

the temporal decorrelation. The received jammer amplitudes on a pulse-by-pulse

basis are considered random and can be written as a vector of random amplitudes,

α =
[

α0 α1 · · · αM−1

]T

. (3.84)

Since there is no temporal correlation, the space-time snapshot for a jammer can be

written as

χj = e (ϑz)⊗αj ⊗ a (ϑx) . (3.85)
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Finding the expected covariance matrix of the jammer space-time snapshot

involves first examining the cross correlation characteristics of individual jammer

amplitudes. Assuming the jammer signal is stationary over a CPI permits drawing

the general conclusion that

E
{

αmk
α∗
ml

}

= σ2ξjδmk−ml
(3.86)

which holds for all mk and ml. As before, σ
2 represents the noise power per element

per pulse and is equal to NoB. Extending the above equation to accommodate the

previously defined vector of received jammer amplitudes on each pulse gives

E
{

αjα
H
j

}

= σ2ξjIM . (3.87)

Using these facts, the jammer covariance matrix is found as

Rj = E
{

χjχ
H
j

}

(3.88)

= E
{

[e (ϑz)⊗αj ⊗ a (ϑx)] [e (ϑz)⊗αj ⊗ a (ϑx)]H
}

(3.89)

= σ2ξje (ϑz) e
H (ϑz)⊗ IM ⊗ a (ϑx) aH (ϑx) . (3.90)

The final simplification uses Eqn. (A.2) from Appendix A. The M × M identity

matrix accounts for the uncorrelated temporal characteristics of the jammer signal.

The spatial correlation across the array retains the other two terms in the covariance

structure.

3.10 Airborne Clutter Model

The airborne clutter model is considerably more complicated than the previous

two models. Clutter models represent one of the most contentious topics in the radar

arena. This dissertation work not only establishes a 3D clutter model but also strives

to confirm all performance results obtained using the model with actual measured
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Figure 3.12: Top view of clutter ring geometry.

airborne radar data. Measured data is obtained from the MCARM program [59]

and is discussed in detail in Section 4.1.1. The basic clutter model presented here

represents an extension to one developed in [65] which has been generally accepted

within the radar adaptive processing community.

Model development begins by first confining the primary source of clutter to the

Earth’s surface, e.g., ground or sea clutter. The effects of sky clutter are considered

small when compared to the ground and are neglected in the model. The earth is

spherically modeled using a 4/3 effective radius.

The airborne radar can be interpreted as only viewing a single range cell at

a time. Given this view, the range cell is defined by a circular region around the

aircraft where the radius represents the range and is also called the clutter ring.

Figure 3.12 shows the clutter ring at a range Rc. Figure 3.13 shows the same clutter

ring when viewed from the side illustrating the elevation angle and grazing angle ψc.
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Figure 3.13: Side view of clutter ring geometry.

The clutter model establishes a single clutter patch of angular extent ∆φ lo-

cated distance Rc from the radar. The clutter ring is made up of Nc clutter patches

around the aircraft. A simplistic viewpoint of the model is to describe each patch

and then simply add them up to form the clutter returns for that range cell.

Each clutter patch is described in terms of its elevation and azimuth angles

along with the range relationship to the radar. Furthermore, the reflectivity of

the patch is incorporated through its radar cross section. Begin by first describing

the elevation angle to a clutter patch (θc) at range Rc. This angle is determined

geometrically using the law of cosines, i.e.,

θc = − sin−1

[

R2
c + ha (ha + 2ae)

2Rc (ae + ha)

]

, (3.91)

where the negative is a result of the previous definition of positive elevation angles

upward, ae is the effective radius of the earth and ha is the aircraft altitude. The

effective radius of the earth (ae) uses the 4/3 radius model and hence ae = 4re/3.

The grazing angle ψc is important to the actual modeling of the clutter itself. A

constant gamma model is later used to characterize clutter reflectivity. The constant

gamma reflectivity model depends solely on ψc for a particular terrain type. The

grazing angle represents the angle between a line tangential to the earth’s surface at
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the clutter patch and a line extended from the airborne radar to the patch, e.g.,

ψc = − sin−1

(

R2
c − ha (ha + 2ae)

2Rcae

)

. (3.92)

Ambiguous range returns are also modeled. Therefore, the next step is to

determine range to the horizon. If the horizon range is greater than the unambiguous

range of the radar, Ru, the ambiguous clutter rings must be incorporated. Since the

grazing angle is the angle between the line tangential to the clutter patch and a line

from the radar to the patch, the horizon range is simply the point at which ψc = 0.

Using this realization, the horizon range is easily found as

Rh =
√

h2a + 2haae. (3.93)

The unambiguous range is simply Ru = cTr/2 where Tr is the PRI. The number of

range ambiguities Nr is simply the floor function (round down) operating on Rh/Ru

or

Nr =

⌊

Rh

Ru

⌋

. (3.94)

The next step is determining the spatial frequency of an individual clutter

patch. Let’s examine the ikth patch. The spatial frequency (ϑik) is the projection of

a vector to the ikth patch onto a vector to the npth element of the array divided by

the wavelength, i.e.,

ϑik =
k̂(θi, φk) ¦ d

λo
. (3.95)

Substituting definitions of Eqn. (3.2) and Eqn. (3.1) into Eqn. (3.95) yields

ϑik =
ndx cos θi sinφk + pdz sin θi

λo
. (3.96)
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Using the previously defined ϑx and ϑz of Eqn. (3.20) and Eqn. (3.21), respectively,

results in

ϑik = nϑx + pϑz. (3.97)

Equation (3.97) represents the spatial frequency of the ikth clutter patch.

To this point, only one component is missing to write the space-time snapshot

to the ikth clutter patch: the normalized Doppler frequency. The Doppler frequency

of this individual patch is proportional to the projection of the vector to the patch

onto the velocity vector of the platform,

fc (θi, φk) =
2k̂(θi, φk) ¦ va

λo
. (3.98)

Assuming no platform crab angle, the velocity vector is simply vax̂. Therefore, the

Doppler frequency of the ikth clutter patch is

fc (θi, φk) =
2 cos θi sinφk

λo
. (3.99)

The normalized Doppler frequency is obtained by dividing by the PRF, ω̄ik =

fc (θi, φk) /fr.

! A critical realization is evident from Eqn. (3.99). The clutter Doppler
frequency is azimuth (φk) and range (θi) dependent. When speaking of
mainbeam clutter, the array transmit beam is formed at boresight, perpen-
dicular to the aircraft velocity vector, and maximum clutter response occurs
at φ = 0 (unless surface RCS characteristics result in higher sidelobe re-
turns). Since sinφ = 0 in this case, the maximum clutter response occurs at
0 Hz and is not range dependent. This conclusion also neglects beamwidth
effects since range independence is only true for clutter lying exactly along
the φ = 0 line.

Also, if the mainbeam is no longer perpendicular to the aircraft velocity vector
(aircraft crab) the maximum clutter response again becomes a function of
range, e.g., cos θ. Steering the mainbeam from boresight (on transmit) also
introduces range functionality. Individual clutter patches, i.e., sidelobe clutter
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returns, retain range dependence regardless of array attitude with respect to
the velocity vector.

Using normalized Doppler and spatial frequency, the 3D space-time snapshot

corresponding to clutter patches around a range ring at range Rc can be written as

χc =
Nc
∑

i=1

Nr
∑

k=1

αike (ϑz)⊗ b (ω̄ik)⊗ a (ϑx) . (3.100)

Spatial frequencies ϑz and ϑx are a function of clutter patch elevation and azimuth

angles.

The next step involves determining the form of the random clutter patch am-

plitude αik. First, begin by finding the effective RCS of the clutter patch. Given

ground reflectivity (per unit area) at this patch, σo(θi, φk), the effective RCS is this

reflectivity multiplied by the patch area [58,65]

σik = σo(θi, φk)Ri∆φ∆R secψi. (3.101)

The area reflectivity is also known as sigma zero in other literature and represents

an RCS density. This form is commonly used because of the distributed nature of

clutter. The area of the clutter patch depends on the grazing angle and range to the

patch. Hence, the effective patch RCS depends on which range ambiguity is being

calculated and there is a dependence on the ambiguous range Ri. If the PRI and

horizon range result in no range ambiguities, then Ri = Rc and there is only one

clutter patch to deal with at a particular azimuth. The angular extent of the patch,

∆φ, is simply 2π/Nc. The term ∆R is the range resolution of the radar and is equal

to c/(2B). Using a constant gamma model for clutter [58], the area reflectivity is

defined as

σo(θi, φk) = γ sinψi. (3.102)
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The clutter patch RCS now allows use of the radar equation to define an

element Clutter-to-Noise Ratio (CNR). The CNR at a single element is

ξik =
PtGt (θi, φk) g (θi, φk)λ

2
oσik

(4π)3NoBLsR4
i

. (3.103)

The term Gt (θi, φk) represents the antenna array pattern on transmit and was shown

in Fig. 3.11. The receive power pattern is g (θi, φk) and is simply the magnitude of

the voltage pattern f (θi, φk) squared. Using the CNR definition, the random clutter

amplitudes must satisfy

E {αikα∗
ik} = σ2ξik, (3.104)

where σ2 is the noise power per element, hence this quantity is the clutter power per

element. However, returns from different clutter patches are uncorrelated. Therefore,

E
{

αikα
∗
jl

}

= σ2ξikδi−jδk−l. (3.105)

With these expected values, the covariance matrix for the clutter can be found.

The operation is simple and as before involves taking the expected value of the space-

time snapshot outer product corresponding to the clutter for a particular range cell.

This definition begins as

Rc = E
{

χcχ
H
c

}

(3.106)

= E
{

Nc
∑

i=1

Nr
∑

k=1

αike (ϑz)⊗ b (ω̄ik)⊗ a (ϑx)

[

Nc
∑

j=1

Nr
∑

l=1

αjle (ϑz)⊗ b (ω̄jl)⊗ a (ϑx)
]H







, (3.107)

where the reader is reminded of the embedded dependence on θi and φk within ϑx

and ϑz. Using expected value properties previously defined (in particular, the lack
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of correlation from patch to patch), allows the simplification to

Rc = σ2
Nc
∑

i=1

Nr
∑

k=1

ξike (ϑz) e
H (ϑz)⊗ b (ω̄ik)b

H (ω̄ik)⊗ a (ϑx) aH (ϑx) . (3.108)

This is the form of the clutter covariance matrix for a given range cell. Obviously

this development only applies for range cells corresponding to ranges greater than

the aircraft altitude. A range less than the platform altitude will not include ground

clutter!

! The clutter model presented in this section incorporates range am-
biguous clutter returns. Unlike previous 2D work, these ambiguous returns
are used in the performance evaluations shown in the following chapters.
Depending on the number of range ambiguities, i.e, the radar PRI, signifi-
cant performance degradation is incurred as a direct result. The impact is
fully characterized in the following work by comparing results both with and
without range ambiguous clutter.

3.11 Consolidating Model Components

The final step involves consolidating the components developed in previous

sections. Each component has been derived independently and some explanation

is warranted on joining them. Consider two different scenarios: target present and

no target present. In the target present scenario, a single space-time snapshot is

composed of the target return, clutter returns, thermal noise, and barrage noise

jammer returns. Using the notation established in this chapter, a composite space-

time snapshot for this case is described by

χ = χt + χc + χn + χj (3.109)

and is commonly called the H1 hypothesis (target present).

The null hypothesis H0 (no target present) is characterized by a space-time

snapshot containing only clutter returns, thermal noise, and barrage noise jammer
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returns. The H0 composite space-time snapshot is described by

χ = χc + χn + χj. (3.110)

Using these two equations, 3D model data can be generated on a snapshot-

by-snapshot basis. Although this approach is the most accurate, it is also the most

time consuming and sometimes overwhelms computer resources.

An alternate approach involves coloring whitened data using covariance ma-

trix R. The covariance matrix describing the entire process is composed of each

individual component. This result, for H0, is seen by

R ≡ E
{

χχH
}

(3.111)

= Rc +Rn +Rj. (3.112)

The cross correlation terms are identically zero because clutter, thermal noise, and

any barrage noise jammer are all statistically independent.

3.12 Summary

Establishing an accurate data model is crucial in the research and evaluation

of interference suppression methods. This chapter establishes a 3D model based on

the physical characteristics of the airborne radar. Comparisons to actual measured

airborne radar data in the following chapters show the model produces accurate and

reliable results.

Based on previous 2D work, the proposed 3D model offers several extensions.

First, returns from elevation channels have been incorporated into the vector frame-

work. Extension to a 2D planar array forced the use of array element patterns as a

function of azimuth and elevation, now explicitly included in the model. Elevation
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functionality within the individual element patterns represents an important factor

when attempting to compare with actual measured data.

Each facet of the airborne radar problem is addressed in detail. A coordinate

system common to airborne radar platforms serves to describe returns from the entire

sphere surrounding the radar. Using this coordinate system, the transmit signal is

examined within a mathematical framework suitable for subsequent analysis. This

mathematical foundation allows characterization of the return signal on a per pulse,

per element basis. Working at the per pulse, per element level, a vectorized format

was developed allowing statistical characterization of clutter, jamming, and thermal

noise components present in actual airborne radar scenarios.

A fairly important aspect of the 3D data model involves range ambiguous

returns. Although the original 2D model has range ambiguous return capability, all

reported results based on the model, including the original work [65], do not account

for nor include range ambiguous clutter effects. This work not only provides for

these returns within the 3D model, but also presents results for cases including range

ambiguous clutter. Range ambiguous clutter has a significant impact for medium

and high-PRF radars as shown throughout this work. Elevation adaptivity serves to

alleviate the associated performance loss.

From the 3D data model framework, expressions for the space-time steering

vector, covariance matrix, and related processing elements were developed. These

individual components serve as the building blocks for the subsequent 3D adaptive

methods. The 3D model is purposely constructed in a manner providing generality.

An in-depth discussion of the original 2D model was not provided since the 3D model

effectively collapses to the 2D case.

As presented in this chapter, the 3D model is designed to produce homogeneous

data. When examining most interference suppression methods, this approach is

sufficient and desirable. However, the goal behind the hybrid research in Chapter VI

is operation within heterogeneous interference.
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Simulating heterogeneous interference is not difficult. For this work, the data

model of this chapter is used for clutter, noise, and jamming. The resulting homo-

geneous data is then corrupted using the target model. As discussed in Section 2.4,

the introduction of a target return different from the radar look direction generates

a basic heterogeneous data case termed a discrete interferer.
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IV. Three-Dimensional Factored Methods

This research effort’s primary objective is the advancement of adaptive interfer-

ence suppression techniques for airborne radar. The problem is one of detect-

ing targets within a severe interference environment characterized by high levels of

ground clutter, jammer infiltration, and other strong sources not of interest (termed

discrete interferers). Each of these individual interference factors were addressed in

the 3D data model of Chapter III. The next step in the research chain of Fig. 1.2 con-

siders development of 3D factored interference suppression approaches. The validity

of elevation based interference suppression is examined in this chapter.

Radar Space-Time Adaptive Processing (STAP) techniques have classically

focused on azimuth-Doppler adaptivity while placing minimal emphasis on elevation.

Elevation beamforming offers significant clutter suppression improvement, allowing

further suppression of interference sources having identical Doppler and azimuth.

This chapter incorporates elevation adaptivity through an interferometric approach,

greatly improving clutter suppression while providing an often overlooked target

height discrimination capability.

The first section provides a proof-of-concept for 3D-FTS, a simple two-element

interferometer fused with the 2D-FTS method reviewed in Section 2.6. The idea

involves a basic implementation of the ICE concept discussed in Section 2.8.1.1

followed by 2D-FTS.

Since the Multi-Channel Airborne Radar Measurement (MCARM) program

used a planar array with two vertical channels, constraining the 3D proof-of-concept

to two vertical elements allows a critical comparison. This comparison is between

results based on the 3D data model developed in Chapter III and those based on

measured data. Validity of the 3D data model is key to the 3D performance im-

provement claims made throughout the remainder of this document. Obviously, this
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first design serves a key role in validating not only the 3D data model but also the

overall 3D interference suppression concept.

Based on original 3D-FTS success, the second major topic of this chapter

moves forward with a mathematical construct encapsulating a multi-stage processing

framework capable of operating with any number of elements or pulses. The multi-

stage 3D framework clearly extends traditional 2D-FTS into the azimuth-Dopp-

ler-elevation hypercube. The proposed concept is validated using results based on

simulated airborne radar data. Target detection improvement on the order of 25 dB,

when compared to standard 2D-FTS processing, is demonstrated for an 8 × 8 non-

uniform rectangular array. Elevation pattern data is provided to illustrate achievable

null width/depth capabilities. This data also indicates target height discrimination

is inherently provided and warrants further development.

The improvements gained by 3D-FTS, when compared to 2D-FTS for the array

and CPI sizes considered, suggest other possible benefits may be realized. One

possible benefit involves a previous assumption: reducing array size typically implies

a reduction in performance. An array thinning analysis is provided in Section 4.3

and shows how performance reduction can be avoided in a typical radar environment.

The result occurs because, in 3D STAP, more DOF are available than necessary to

suppress the interference. Hence, an array can be thinned and maintain equivalent

performance.

The final factored approach considered in this work is 3D-JDL. The 3D-FTS

development repeatedly reminds the reader that any 2D STAP technique can follow

elevation adaptivity. For this final method, 2D-FTS is replaced by the joint domain

2D-JDL method reviewed in Section 2.7. Obviously, 2D-JDL offers much better per-

formance than 2D-FTS within the azimuth-Doppler plane due to the joint approach.

This baseline improvement allows 3D-JDL to outperform 3D-FTS in terms of output

SINR and, equivalently, detection probability.
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The last section of this chapter discusses range ambiguous interference suppres-

sion. Two distinct alternatives are developed for the elevation beamforming stage

of processing. Each approach seeks to suppress range ambiguous interference in a

different manner. The first approach offers elevation null placement based on the

physical geometry of the airborne radar in relation to the spherical Earth model.

This model is identical to the one used in Chapter III. The second approach pro-

poses elevation null placement based on a statistical technique. In effect, an elevation

only interference covariance matrix is generated and used to formulate the elevation

weights. Each technique is compared with results reported for each factored method

developed in this chapter.

4.1 3D-FTS Using Two Element Interferometry Fused with 2D-FTS

This section presents interferometric 3D-FTS [31, 32, 34], a two channel ver-

tical beamformer operating in conjunction with 2D-FTS STAP. Reported results

use measured airborne radar data from the Multi-Channel Airborne Radar Mea-

surement (MCARM) program [59]. These results illustrate consistent performance

improvements approaching 15 dB. The improvements from this two element vertical

interferometer implementation mirror reported Adaptive Clutter Erasure (ACE) [67]

results. Although comparable to the elevation interference suppression approach of

3D-FTS, ACE is a one-dimensional interference suppression method and is not com-

parable to the overall 3D-FTS approach developed here.

4.1.1 MCARM Program. The MCARM program is an airborne radar

testbed for the exploration of adaptive interference suppression methods, including

STAP. All algorithm investigation is done off-line; no real-time processing was imple-

mented on the platform. Hence, the primary goal of the program was multi-channel

clutter data collection from an airborne platform.
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Table 4.1: MCARM radar parameters for acquisi-
tion 575, flight number 5.

Parameter Value

Aircraft Altitude 3073 m
Transmit Frequency, f 1.24 GHz
Pulse Repetition Frequency (PRF), fPRF 1984 Hz
Transmit Azimuth Angle, φxmit −0.895◦
Transmit Elevation Angle, θxmit 0◦

Elevation Channel Spacing, dz 0.1407 m
Azimuth Channel Spacing, dx 0.1092 m
Azimuth Channels, N 11
Elevation Channels, P 2
Pulses per Coherent Processing Interval, M 128
Range Cells per Inter-Pulse Period, L 630

A BAC 1-11 served as the test platform for the L-band radar. Table 4.1

shows the pertinent parameters for the data acquisition used here. All angles are

referenced to the array normal where +φxmit points towards the nose of the aircraft

and +θxmit points upwards. The antenna array was located on the port (left) side of

the MCARM aircraft, indicating the expected mainbeam clutter Doppler frequency

is negative for φxmit = −0.895◦. Furthermore, there is a constant down tilt of 5◦

on the antenna array in conjunction with aircraft roll. Aircraft orientation for this

acquisition was −7.3◦ crab angle (positive is clockwise when looking down on the

aircraft), 4.1◦ pitch (positive is nose up), and a −0.1◦ roll (positive is right wing

down).

4.1.2 Elevation Adaptivity. Elevation adaptivity is incorporated using a

simple two-channel interferometer, e.g., beamformer. The two channel restriction at

this point is a direct result of the MCARM aircraft configuration, not a consequence

of technical limitations, thereby allowing the use of measured airborne radar data.
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As shown in Section 4.2, the results presented here can be improved as the elevation

DOF increase, i.e., number of elevation channels P increases.

The elevation beamformer is implemented with the goal of ground clutter sup-

pression. Steering an elevation null in the ground direction for each range cell ac-

complishes this goal. Therefore, the elevation weights (inter-channel phase delays)

vary on a range cell basis. Steering the elevation null to the ground location is a

simple trigonometric or beamforming problem. The appropriate vertical weighting

for nulling ground clutter is

[

1 − exp
(

j2π fdz
c

sin θg
)

]T

, (4.1)

where c is the speed of light, and θg is the elevation angle to the ground, referenced

to the array normal, for a particular range cell.

The entire elevation beamforming process can be thought of as co-phasing

the ground clutter returns for each range cell. Ideally, ground clutter returns are

cancelled leaving moving and airborne targets. A direct benefit of applying inter-

ferometric ground clutter suppression is that target amplitude is now proportional

to height as a function of the vertical beamformer pattern. The overall elevation

concept is similar to ICE and the implementation in ACE.

4.1.3 2D Factored Time-Space. As Section 2.6 showed, the 2D Factored

Time-Space (2D-FTS) technique is effectively post-Doppler adaptive beamforming.

98



The data is first Doppler filtered and then adaptive weighting is calculated for each

Doppler cell across the azimuth channels. Hence, the 2D-FTS technique is only

spatially adaptive. However, the method is recognized as one of the simplest STAP

algorithms and commonly used as a benchmark for developmental comparison.

The FTS implementation used here implements the Doppler filter without

windowing, e.g., beam sharpening. A variety of windows/tapers can be applied to

the Doppler filter forcing a significant reduction in sidelobe level, all at the expense

of mainbeam widening [36]. Results may be further improved over those reported

here by varying target Doppler location with respect to mainbeam clutter.

4.1.4 Test Statistic. The results presented use the Constant False Alarm

Rate (CFAR) test statistic for unknown/estimated covariance given by [21],

ρ =

∣

∣

∣
a(φ)HR̂−1

N χ̃
∣

∣

∣

2

a(φ)HR̂−1
N a(φ)

, (4.2)

where R̂N is the N ×N covariance matrix estimated for the range cell and Doppler

bin of interest, a(φ) is a N × 1 spatial steering vector oriented towards the azimuth

angle of interest [65], and χ̃ is the N×1 azimuth channel data for the elevation angle

and Doppler bin of interest. The test statistic is also known as the modified Sample

Matrix Inversion (SMI) test for estimated covariance. The SMI test statistic is

identical to the Adaptive Matched Filter (AMF) test [51] and both exhibit embedded

CFAR characteristics.

99



Using the test statistic of Eqn. (4.2), the false alarm probability PFA can be

shown to be dependent only on the integers N and K, the number of range cells

used in the covariance matrix estimate. Therefore, the test is CFAR [21]. Any

improvement in the test statistic translates into direct improvement in output Signal-

to-Interference plus Noise Ratio (SINR) and detection probability PD. The CFAR

claim is made given the sum of the outer product of each data vector used in the

covariance estimate,

KR̂N =
K
∑

i=1

χ̃iχ̃
H
i , (4.3)

is complex Wishart distributed. The quantity is assumed complex Wishart dis-

tributed after the elevation beamforming operation and the test statistic remains

CFAR. This assumption is valid given the elevation beamforming operation does not

change the distribution of the incoming data.

4.1.5 Performance Measures. Tabular results are presented given two

performance measures; Relative Peak Sidelobe Level (RPSL) and Relative Average

Sidelobe Level (RASL). Both metrics are defined relative to the target peak response.

RPSL refers to the difference (in dB) between the target and next highest peak

response. RASL refers to the average difference (in dB) between the target and

sidelobe peak responses.

4.1.6 Two Element 3D-FTS Results. For comparison purposes, a simulated

target was injected into the measured data set using parameters given in Table 4.2.
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Table 4.2: Simulated
target parameters.

Parameter Value

φt −0.895◦
θt 45◦

Altitude 4923 m
Doppler 496 Hz
Range Cell 300
Range 71.95 km

The target azimuth angle φt matches the radar transmit azimuth for this data ac-

quisition. The target elevation angle θt was chosen to ensure the target is in the

elevation pattern mainbeam; the resulting target altitude is shown in the table.

Figure 4.1 shows the results of 2D-FTS (dashed line) using only the upper

azimuth channels of the MCARM array compared to 3D-FTS (solid line) using the

elevation beamforming fused with 2D-FTS. The figure shows the normalized AMF

test statistic at the target Doppler bin along a set of range cells neighboring the target

location. RPSL, the separation between target and next highest peak responses,

improved by 14.71 dB and RASL improved by 13.71 dB.

Similarly, Fig. 4.2 shows the normalized AMF test statistic at the target range

cell across all M = 128 Doppler bins. RPSL improved by 13.82 dB when using the

elevation ground clutter suppression in conjunction with FTS and RASL improved

by 16.62 dB.

Because the test is CFAR, these results translate directly to improvement in

output SINR and a corresponding improvement in PD for a constant PFA (constant
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Figure 4.1: Interferometric elevation ground clutter suppres-
sion achieves almost 14 dB improvement in spurious range re-
turns at target Doppler bin.
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sion achieves almost 14 dB improvement in spurious Doppler
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Figure 4.3: An improvement surface shows performance
degradation only in the white Range-doppler bins when using
the elevation beamformer.

decision threshold). Therefore, a significant performance improvement results when

applying elevation interferometry to suppress ground clutter returns.

Figure 4.3 represents an improvement surface generated from data used for

Figs. 4.1 and 4.2. The surface is generated by subtracting the test statistic (in dB)

for elevation beamforming with 2D-FTS (3D-FTS) from the test statistic generated

for standard 2D-FTS, where both are normalized by the peak target response. The

intersecting solid lines in the figure correspond to the target location and represent

0 dB improvement by definition (given the data is normalized prior to subtraction).

The pure white portions of the surface represent degradation of the output test

statistic when using elevation beamforming with 2D-FTS (3D-FTS).
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Table 4.3: 2D-FTS vs. 3D-FTS performance summary. All units are dB.

Range Cut Doppler Cut Surface
(Fig. 4.1) (Fig. 4.2) (Fig. 4.3)

RPSL RASL RPSL RASL RPSL RASL

2D-FTS -17.31 -27.75 -15.48 -25.00 -10.76 -26.85
3D-FTS -32.01 -41.46 -29.30 -41.62 -25.01 -40.68

Improvement 14.71 13.71 13.82 16.62 14.25 13.83

A visual scan of the surface clearly reveals very little degradation over the

entire range-Doppler surface under consideration. Furthermore, analysis of the white

regions revealed only a small amount of degradation actually occurs. Specifically,

the white areas merely represent areas of deep nulls in the 2D-FTS approach that

increased slightly when using interferometric 3D-FTS; these areas still represent nulls

and not false target detections. For example, consider the white area along the target

range cell line (300) at a Doppler of approximately 750 Hz. Close examination of

Fig. 4.2 at this point shows a degradation of approximately 5 dB, yet the response

at this Doppler bin is still 34 dB below the target peak response.

Table 4.3 summarizes results in terms of the RPSL and RASL performance

metrics previously introduced. Obviously, using elevation interferometry in conjunc-

tion with 2D-FTS STAP provides significant performance improvements in target

detection capability. A much higher PD can be obtained for the same PFA setting.

4.1.7 Target Altitude Determination. As mentioned previously, joining

elevation beamforming with 2D-FTS imparts a pattern specific relationship between
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target altitude and test statistic magnitude. If this relationship is present, target

elevation angle variation should allow indirect plotting of the elevation beamforming

pattern.

Figure 4.4 shows the result of this experiment. The solid curve is the analytical

elevation interferometric pattern. The dashed curve is the result of measuring the

separation between the target peak and next highest peak with the target located

at the elevation angle θ depicted in the figure, for elevation interferometry in con-

junction with 2D-FTS. As surmised, the output response is now directly related to

target altitude.

! The positive θ = 2◦ (as referenced to the array normal) for the elevation
interferometric null in the direction of the ground clutter is a result of the
constant 5◦ down tilt of the MCARM antenna array and the small aircraft
roll angle in this acquisition. When referenced to a fixed coordinate system,
the null is actually pointed towards the ground.

4.2 3D-FTS Multidimensional Mathematical Construct

Target detection improvement within the azimuth-Doppler plane has been

clearly demonstrated using STAP, with limited work addressing the benefits of el-

evation adaptivity. A previous contribution [42] introduced the concept of using

elevation processing to suppress range ambiguous interference. However, no results

were provided and the realization that little published work even addressed elevation

adaptivity was offered [42].
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Figure 4.4: Elevation pattern plotted by measuring difference
between target range cell peak and next highest range peak.
This figure indicates amplitude is now proportional to target
altitude.

The interferometric 3D-FTS approach and analysis presented to this point [31]

represents a significant improvement over conventional 2D-FTS. Although the eleva-

tion interferometer can be followed by any adaptive processing method, 2D-FTS was

chosen merely for simplicity to provide baseline results. Specific results for the data

acquisition (real airborne radar measurements) promise performance improvements

approaching 15 dB for a two channel vertical interferometer. This improvement

compares favorably with previously reported results for ACE [67]. Furthermore, the

results presented in Section 4.1.6 are independent of the particular data acquisi-

tion. The proposed interferometric 3D-FTS technique was performed on all freely
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releasable MCARM data acquisitions and shown to offer similar improvement over

2D-FTS.

Anticipated performance improvement increases as the number of vertical chan-

nels is increased. Furthermore, increasing the number of vertical channels offers

greatly improved target altitude resolution and narrows the ground clutter null.

Narrowing the ground clutter null alleviates involuntary low-altitude target suppres-

sion. Ideally, the ground clutter null should only cover the elevation extent required

to suppress the desired range ring. This observation suggests an optimum number of

vertical antenna channels, although it will be a function of target range and therefore

impractical.

The primary problem with using the MCARM data is the limitation to two

vertical channels. Within this constraint, the primary purpose of Section 4.1 was

achieved, i.e., demonstrating that 3D interference suppression offers significant per-

formance gains. The next step involves generalizing the elevation interferometric

approach beyond the two channel limitation, as provided in this section.

! Due to the MCARM two vertical channel limitation, measured data
is no longer useful in evaluating the proposed 3D methods and the 3D data
model of Chapter III becomes crucial. For preliminary validation, the work
of Section 4.1 was duplicated with simulated 2D and 3D data from the
3D model and compared with MCARM data; nearly identical results were
obtained.

Using simulated data generated from the 3D physical radar environment model,

this section extends previous 3D-FTS results by improving interferometric elevation

107



processing and demonstrating capabilities for larger vertical DOF than available in

the MCARM radar. Extremely deep and relatively wide clutter nulls are achieved

while maintaining an elevation mainbeam in the target direction. Detection im-

provement approaching 25 dB, when compared to standard 2D-FTS processing, is

demonstrated for an 8 × 8 rectangular array using a Coherent Processing Interval

(CPI) of eight pulses. Furthermore, target height information as a function of scan

angle is inherently available with resolution dependent on the number of elevation

channels.

The overall 3D concept proposed here is consistent with Section 4.1 and reduces

to the factored approach detailed in Fig. 4.5. Array element data is first filtered using

elevation beamforming. The goal is clutter suppression while avoiding target nulling.

This filtering is adaptive on a range cell basis with the clutter null centered at the

clutter elevation angle. Doppler filtering follows and the final stage is statistical

adaptive processing. The final two filtering stages represent traditional 2D-FTS.

The goal is to show significant performance improvements using (1) the relatively

simple 2D-FTS STAP technique having marginal stand-alone detection capability

and (2) smaller array/CPI sizes generally thought to provide insufficient suppression.

However, any STAP technique can follow the interferometric elevation processing

with expected performance improvements over those presented here, as shown in

Section 4.4.

! The purpose of this work is not to provide an adequate implementa-
tion of 2D-FTS on the ULA. Conversely, marginal 2D-FTS performance is
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Figure 4.5: Proposed 3D-FTS technique incorporating elevation beamforming.

desired to show the drastic improvements gained through the introduction of
elevation based interference suppression with 3D-FTS. These improvements
are shown for array/CPI sizes characteristically considered unacceptable.

Because the proposed 3D-FTS method attempts to suppress interference over

an entire range ring, it is suboptimum. An optimum processor is capable of placing

nulls at point(s) in the three-dimensional space, i.e., at a particular azimuth angle,

Doppler frequency, and elevation angle. Achieving optimum processing capability is

the subject of Chapter V.

The proposed adaptive processing method can be represented by expanding the

traditional 2D structure of the incoming space-time snapshot χ to incorporate array

elevation data. This expansion yields the space-time steering vector of Eqn. (3.44)

on page 71,

e⊗ b⊗ a, (4.4)
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where e and a represent the elevation (P × 1) and azimuth (N × 1) steering vectors,

and b is the Doppler (M ×1) steering vector. This formulation drives the form of χ,

yielding a PMN ×1 vector. Using this structure, the proposed 3D-FTS interference

suppression technique is easily encapsulated as

(EBwa)
H
χ = wHχ, (4.5)

where wa, B, and E are defined in the following subsections. This mathemati-

cal construct casts a three-dimensional problem into a one-dimensional, vectorized

framework. Although a more compact format may exist, the framework presented

here offers strong similarity to existing STAP architectures.

4.2.1 Elevation Adaptivity. Each weight vector component is derived se-

quentially in a factored approach. First, elevation adaptivity is applied in Eqn. (4.5)

through

E = we ⊗ IMN , (4.6)

a PMN ×MN matrix with IMN an MN ×MN identity matrix and we, a P × 1

elevation weight vector (described below). The Kronecker product with the identity

matrix is a direct result of the incoming data format. The goal is elevation beam-

forming with the set of weights contained in we, yet the operation is a P × 1 weight

vector filtering an incoming space-time snapshot χ of dimension PMN × 1. After

elevation beamforming, the data vector should contain only MN elements. Exam-
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ining the structure of the space-time snapshot shows the mathematical form of this

operation to be

EHχ = (we ⊗ IMN)
H
χ. (4.7)

The Kronecker product provides a compact, succinct notation that is easy to read

and understand within the overall framework of the defined data structure. The

identity matrix role is seen by simply expanding we ⊗ IMN into
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From Eqn. (4.8), it is clear how this method (after the Hermitian operation in the

weight application) extracts the correct elements of the incoming space-time snapshot

for elevation beamforming. For this portion of the processing, the identity matrix

has dimension MN since each set of vertical channel/array samples is separated by

MN samples.

The range cell under test (range ring) defines an elevation angle from array

boresight to the ground. Elevation weights we are chosen to suppress clutter at this

angle while simultaneously focusing a beam towards the target’s elevation location.

Clutter suppression in elevation reduces interference, allowing improved performance

of partially adaptive methods in azimuth and Doppler. Using an operation parallel-

ing Wiener filter theory, we and Ce (an artificially generated interference covariance

matrix designed to place null(s) at the unambiguous clutter ring) are calculated from

the filter look direction angle θ and the angle to the clutter ring θc under considera-

tion

we = C−1
e e (θ) (4.9)

where

Ce =
1

J

J−1
∑

i=1

e (θi) e (θi)
H + σ2IP (4.10)

θi = αiθc where αi ∈ <. (4.11)
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The role of steering vector e (θ) is mainbeam/target preservation. The projection

of matrix C−1
e onto the steering vector results in strong clutter nulls at locations

described by θc, given the look direction θ does not lie within the range of θi used

in Eqn. (4.10). For simulations presented later in this chapter, Ce contains J =

3 significant clutter sources with the clutter elevation angle bracketed, i.e., θi =

{0.95 θc, θc, 1.05 θc}. These angles and the degree of separation between them act

as a null width control parameter.

One design consideration, or optimization, is of interest at this point. It may be

beneficial to vary the clutter null width based on the range to the clutter source/ring.

For shorter ranges, the angular extent of the range ring is considerably more than

at longer ranges. In this case, optimization may be possible by merely choosing an

appropriate balance of J and angular separation in θi (a constant of 0.05 in this

development) to fully cover the range ring angular extent.

! A second point of considerable importance involves range ambiguous
data. At this point in the development of 3D-FTS, the elevation beamformer
does not attempt to null range ambiguous clutter returns. This choice was
made to keep the initial concept simple, although it ignores potentially sig-
nificant performance improvements gained by suppressing range ambiguous
interference. The elevation beamforming extension for range ambiguous clut-
ter suppression is presented in Section 4.5 where the modified matrix Ce in
Eqn. (4.20) is easily substituted for Eqn. (4.10).

The final term of Eqn. (4.10), σ2IP , injects noise into the process ensuring

Ce is full rank and invertible. Here, σ2 was set equal to the noise power spectral

density multiplied by the receiver bandwidth. Eqn. (4.9) projects C−1
e onto an
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elevation steering vector, ensuring the target is not nulled in the clutter suppression

process. Sidelobe levels are of little concern, since the range gating process effectively

constrains harmful clutter to a small angular extent in elevation.

4.2.2 Doppler Filtering. Consistent with conventional 2D-FTS processing,

the second weight vector component in Eqn. (4.5),

B = b⊗ IN , (4.12)

provides non-adaptive Doppler filtering to the target bin. A Kronecker product is ap-

plied to a DFT matrix column, essentially the temporal steering vector of Eqn. (3.39).

Again, the Kronecker product extracts the appropriate elements of the elevation

beamformed space-time snapshot EHχ. Since pulses are separated within the data

structure by N samples, the identity matrix dimension is N .

4.2.3 Azimuth Adaptivity. The final weight vector component in Eqn. (4.5)

provides azimuth adaptivity and is given by

wa = R̂−1
N a, (4.13)

where R̂N is the (N ×N) covariance matrix estimate and a is an (N × 1) azimuth

steering vector. This (N × 1) weight vector wa is statistically based and derived

from a true Wiener filter. In conjunction with the previous Doppler filtering step,
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this operation completes the 2D-FTS portion of the processing. This method is

only adaptive within the angular domain since the Doppler filtering is done with

the standard transformation/steering vector. Covariance matrix estimate R̂N is

estimated by averaging K = 2N secondary data vectors oriented symmetrically

about the target range cell. These secondary data vectors are taken from the Doppler

filtered data, not the raw temporal samples. For K equal to twice the degrees

of freedom, performance predictions are within 3 dB of optimal for this stage of

processing (Reed’s rule) [49]. For standard 2D-FTS, R̂N is given by [65]

R̂N =
1

K

K−1
∑

i=1

BHχiχ
H
i B = BHR̂B. (4.14)

However, an additional level of factored processing has been introduced by the pro-

posed method. Thus, the new covariance estimate must reflect the additional trans-

formation on the incoming data vector and is given by

R̂N =
1

K

K−1
∑

i=1

BHEH
i χiχ

H
i EiB. (4.15)

4.2.4 Test Statistic. Results presented use the modified Sample Matrix

Inversion (SMI) test [21] for estimated covariance shown in Eqn. (4.2). The SMI test

statistic is identical to the Adaptive Matched Filter (AMF) test [51] and both exhibit

embedded CFAR. Therefore, any improvement directly improves output Signal-to-

Interference plus Noise Ratio (SINR) and detection probability (Pd). The CFAR
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Table 4.4: Radar simulation variables.

Parameter Value

Aircraft Altitude 9 km
Transmit Frequency 1.24 GHz
Pulse Repetition Frequency (PRF) 1984 Hz
Pulse Width 50 µsec
Az (dx) & El (dz) Channel Spacing 0.1092 m/0.1407 m
Az (N) & El (P ) Channels 8/8
Pulses per CPI (M) 8

claim is valid for the SMI test provided KR̂N is complex Wishart distributed [21],

assumed true after elevation beamforming.

4.2.5 Results. Radar data was simulated using the 3D data model of Chap-

ter III and simulation parameters consistent with the MCARM array (Table 4.4).

For this work, the radar parameters of Table 4.4 result in range ambiguous data con-

sisting of the unambiguous clutter response plus the clutter response from four range

ambiguous regions. For initial validation, 2D and 3D work of [31] was duplicated

using simulated data and compared with MCARM results; simulated data results

were identical. For comparing the proposed 3D-FTS technique with a conventional

2D-FTS approach, a simulated target was injected into range cell 80 (36.8 km) with

496 Hz Doppler shift at an azimuth angle of 0◦ and elevation angle of 45◦. Reported

results correspond to an 8×8 planar array (side-looking) using a CPI of eight pulses

(resulting in eight Doppler bins).
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Figures 4.6 and 4.7 present normalized CFAR test statistic results for 2D-FTS

(dashed line) using an azimuth array with the proposed 3D-FTS technique (solid

line) incorporating elevation adaptivity. Received SINR (per element, per pulse)1

was set to -53.0 dB, making the target virtually undetectable by standard 2D-FTS

processing. As illustrated in the range profile (at the target Doppler) of Fig. 4.6, the

target’s RPSL across range improved by 24.5 dB to -27.0 dB and RASL across range

improved by 23.2 dB to -36.6 dB. Figure 4.7 offers a similar comparison of the two

output measures across Doppler in the target range cell. Here, the target’s Doppler

RPSL and RASL improved by 20 dB and 17 dB, respectively.

The improvement surface of Fig. 4.8 illustrates points where the method de-

grades performance over standard 2D-FTS (using a linear array). The surface was

generated by subtracting the proposed 3D-FTS CFAR test statistic (in dB) from

the standard 2D-FTS CFAR test statistic (in dB) with both normalized by the tar-

get peak response (not necessarily the highest peak in the test statistic surface).

The dashed intersecting lines correspond to the target location and represent 0 dB

improvement (by definition given the data was normalized prior to subtraction).

The black regions of the surface represent output CFAR test statistic degradation

when using the proposed 3D-FTS method. White areas represent varying levels of

improvement.

1See Appendix C for a discussion of received SINR calculations.
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Figure 4.6: 3D-FTS (with four times the number of vertical
elements used for Figs. 4.1 and 4.2) achieves almost 25 dB RPSL
and 23 dB RASL improvement in spurious range responses.
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Figure 4.7: 3D-FTS achieves almost 20 dB RPSL and 17 dB
RASL improvement in spurious Doppler responses.
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Figure 4.8: Range-Doppler improvement surface shows perfor-
mance degradation only in the black bins when using 3D-FTS.

Figure 4.8 clearly shows minimal degradation over the entire range-Doppler

surface under consideration. Furthermore, the small amount of indicated degradation

(only five range-Doppler regions) is proven inconsequential upon closer examination,

i.e., the black regions merely represent areas of deep nulls in the 2D-FTS approach

that increased slightly when using 3D-FTS. These areas still represent considerable

nulls and not false target detections. For example, consider the black pixel in the

upper right-hand corner (range cell 30 and Doppler bin containing 800 Hz). A

Doppler cut of Fig. 4.8 at this range cell, shown in Fig. 4.9, shows a degradation of

approximately 8 dB near 800 Hz yet the 3D-FTS test statistic remains 27 dB below

the target peak response.
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Figure 4.9: Doppler profile shows 3D-FTS performance degra-
dation is inconsequential near 800 Hz. Although the statistic is
8 dB higher, it remains 27 dB below the target peak.

Figure 4.10 compares the proposed 3D-FTS method to 2D-FTS using a detec-

tion probability (Pd) metric at a constant false alarm probability (Pfa) of 10
−4. The

proposed method exhibits ≈ 30 dB improvement in SINR for constant Pd, consistent

with previous CFAR test statistic improvements.

All results presented thus far include range ambiguous interference. As ob-

served by Klemm [42], researchers seldom address the range ambiguous interference

case. For completeness, range ambiguous clutter was removed from the data and

further comparisons made with the two-dimensional fully Adaptive Matched Fil-

ter (2D-AMF) of Section 2.7. Results are presented in Fig. 4.11. Using K = 2MN
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Figure 4.10: 3D-FTS detection probability (Pd) vs. SINR (per
element, per pulse) with range ambiguous clutter and false alarm
probability (Pfa) of 10

−4.
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Figure 4.11: 3D-FTS detection probability (Pd) versus SINR
(per element, per pulse) without range ambiguous clutter and
false alarm probability (Pfa) of 10

−3.
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secondary data samples for the 2D-AMF, the unambiguous data results show the pro-

posed technique offers significant detection improvement, as evidenced by Fig. 4.11.

Each curve in Figs. 4.10 and 4.11 is the result of a Monte Carlo simulation for

100,000 and 10,000 realizations, respectively. For each ambiguous and unambigu-

ous case considered, identical realizations were used to determine Pfa and Pd for

each algorithm shown. This approach removes any data dependencies within the

results and represents the most consistent detection analysis approach. For each

case, Pfa was held constant allowing a side-by-side comparison of the data shown.

Although higher than practical, a Pfa of 10−3 was used in Fig. 4.11 primarily for

illustrative purposes and permits reliable comparative analysis within computational

constraints.

For clarification, the proposed 3D-FTS technique shows improved performance

over the AMF operating on a two-dimensional data set, i.e., over a linear array

with constant pulse sampling. The 3D method developed here operates over a two-

dimensional rectangular array with constant pulse sampling. Therefore, the idea that

a matched filter provides optimum performance over an Additive White Gaussian

Noise (AWGN) channel has not been violated. Development of the three-dimensional

matched filter framework is reserved for Chapter V.

As stated before, the MCARM program only provides data for two vertical

channels (P = 2). Therefore, the only practical validation technique for the pro-

posed multidimensional processing technique (P > 2) is a Monte Carlo analysis of
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Table 4.5: Average (± standard deviation) 3D-FTS performance mea-
sures using Monte Carlo analysis. All measurements in dB.

Range Cut Doppler Cut Surface
(Fig. 4.6) (Fig. 4.7) (Fig. 4.8)

RPSL RASL RPSL RASL RPSL RASL

2D-FTS

-2.6 ± 2.8 -15.5 ± 2.3 -9.6 ± 3.2 -15.7 ± 3.3 -0.1 ± 2.7 -15.1 ± 2.3

3D-FTS

-25.8 ± 2.6 -38.1 ± 1.6 -30.9 ± 3.0 -37.5 ± 2.7 -22.4 ± 2.5 -37.5 ± 1.5

Improvement

23.2 ± 4.0 22.6 ± 2.8 21.3 ± 4.4 21.8 ± 4.2 22.29 ± 3.7 22.3 ± 2.8

the RPSL and RASL performance measures. The physical model used for data gen-

eration demonstrated reliable results for comparison with MCARM two channel ver-

tical data. Table 4.5 summarizes results for the RASL/RPSL Monte Carlo analysis.

The tabulated statistics imply that the results presented are statistically significant.

The proposed 3D-FTS method consistently offered an average of 22.3 dB RPSL im-

provement (directly impacting Pfa) with a standard deviation of 3.7 dB (just over

10%). Likewise, an average of 22.3 dB RASL improvement was achieved. These find-

ings illustrate the significant performance gains realized through the introduction of

elevation adaptivity.

The data in Table 4.5 also illustrates a previously mentioned point regarding

2D-FTS. By examining the 2D-FTS surface RPSL measurements for the target,

one sees an average of only -0.1 dB of separation in the test statistic between the
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target and next highest peak. Thus, the detection threshold would have to be set

relatively close to spurious non-target responses to detect the relatively small target

response, likely resulting in unacceptable Pfa. However, the proposed method offers

22.3 dB average separation, allowing realistic threshold values and acceptable Pd/Pfa

performance. These concepts are reinforced by inspection of the Pd data presented

in Fig. 4.10.

4.2.6 Elevation Patterns. The simulated elevation pattern (45◦ main-

beam), shown in Fig. 4.12, illustrates the achievable depth and width of vertical

clutter nulls. Given a spherical earth model and radar parameters of Table 4.4, the

ground location angle to the clutter ring corresponding to the target range cell is ap-

proximately −14◦. The figure clearly shows the deep clutter null suppressing returns

from this clutter ring. Note that the indicated suppression level of nearly 110 dB

is primarily attributable to computational capability and is likely not realizable in

practical systems. This figure provides simulated and calculated elevation patterns

for comparison. As indicated, grating lobes encroach upon the angular extent of the

array; this result is merely a consequence of under sampling along the vertical array

axis. Because of the range gating process, the only source of unambiguous interfering

clutter occurs in the clutter ring located at −14◦. This condition strictly applies to

the simulated data case since the earth surface is not truly spherical in real-world

applications due to terrain variations.
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Figure 4.12: Simulated elevation pattern for the 8 × 8 array
with mainbeam formed to 45◦. The pattern was calculated by
moving a constant amplitude target through the elevation extent
of the array.

Figure 4.12 validates the pattern calculation methodology and shows the al-

gorithm is performing as predicted. Similar plots can be generated for Doppler and

azimuth dimensions. However, these are not of primary concern to this development.

For example, the Doppler filtering operation is a simple non-adaptive filter. As such,

its pattern exhibits the typical −13 dB sidelobe pattern commonly found in text-

books. (The only distinguishing characteristic is its shifting to the target Doppler

bin.) Similarly, the factored approach taken in this development allows the azimuth

pattern to be generated independently of the other two dimensions. The focus of this

development was on the proposed 3D-FTS hybrid approach and achieving enhanced
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clutter suppression through elevation processing; the idiosyncracies of basic 2D-FTS

processing were not addressed.

4.3 Elevation Interferometric STAP Using a Thinned Array

The creation of the 3D-FTS technique in the previous section and the signifi-

cant performance gains due to elevation based interference suppression suggest new

possibilities. Generally, the idea of thinning an array coincides with performance

degradation. Yet, addition of the third dimension for interference suppression gives

much greater localization capability, both for targets and interference. This real-

ization leads to the possibility that thinning an array does not necessarily result in

performance degradation. This section evaluates this possibility and shows the hy-

pothesis is true, with remaining elements playing a critical role in performance [34].

The research applies Space-Time Adaptive Processing (STAP) techniques to a

pseudo-circular array generated by selectively thinning a rectangular array. The 3D-

FTS approach of Section 4.2 is used. Results show the thinned 16-element pseudo-

circular array offers significant detection performance improvement over the baseline

2D-FTS technique operating on a linear array, i.e., an 8-element horizontal linear

array. Results are demonstrated for cases with and without range ambiguous clutter.

This performance level is achieved using a factor of M less sample support than re-

quired for full adaptivity whereM represents the number of pulses within a coherent

processing interval.
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As discussed in Chapter II, most STAP research focuses on applying adaptive

processing techniques to a Uniform Linear Array (ULA). Recently, research empha-

sis has begun to shift away from the traditional ULA architecture and is moving

towards applications involving STAP on alternate array configurations. In particu-

lar, STAP methods have been applied to a non-linear set of sensors oriented in an

arc [69, 70] corresponding to an experimental, circular, electronically scanned array

being fabricated by Raytheon. The research in [69,70] highlights complications aris-

ing from the non-linear array configuration, namely, clutter ridge locus movement

as a function of range. Other research efforts acknowledge this problem and offer

remedies for subsequent performance degradation resulting from violating the range

i.i.d. assumption for these atypical non-linear/planar arrays [16]. Also of interest

is the work presented in [42], where nonlinear array configurations are discussed in

some detail with all results presented for the known covariance, range unambiguous,

case.

Previous STAP work on arc arrays typically focused on the case where the

array and target were within the sample plane [69, 70]. The new work presented

here does not propose to take advantage of unique benefits offered by the circular

array when used in this manner, e.g., the lack of mainbeam degradation due to

beam steering. Rather, this work focuses on improving the well-researched detection

capabilities of the conventional ULA by incorporating a planar array. Figure 4.13

illustrates the three array configurations considered for this research. Configuration
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Figure 4.13: Full 8 × 8 rectangular array and thinned array
configurations.

1 represents the baseline rectangular array and directly relates to previous work

in [31, 32]. Configurations 2 and 3 correspond to two distinct “thinned” arrays

with elements chosen to achieve the largest possible horizontal and vertical element

displacement across the array while minimizing the total number of active elements.

4.3.1 Results. Results are presented with detection probability (Pd) curves

for a fixed false alarm probability (Pfa) using estimated covariance and Monte Carlo

analysis, necessary because a closed-form Pd expression has not been developed for

the technique. The Pd metric may be considered the ultimate qualifier of radar sig-

nal processing performance, where all engineering effort is focused towards the goal

of enhanced target detection. However, other factors must be taken into considera-
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tion when comparing processing techniques in this manner. For example, a specific

Pd curve represents target detection capability in a given direction (at a particular

azimuth/elevation angle) at a particular Doppler frequency. The question then be-

comes, “How well can we detect targets at other locations having different Doppler

frequencies?” To avoid generating countless Pd curves and spending undue time on

analysis, an output SINR metric (for known covariance) is provided in an attempt

to better characterize overall array and STAP performance.

Radar data was simulated using the physical environment model of Chap-

ter III and simulation parameters consistent with the MCARM aircraft array [59]

(Table 4.4). In this work, the radar parameters of Table 4.4 result in ambiguous

data consisting of the unambiguous clutter response plus the clutter response from

four range ambiguous regions. For each Pd curve generation, 10,000 realizations were

processed. A single known covariance matrix provides clutter statistics located at

a single range cell/elevation angle. For each realization, a target with a particular

input SINR (per element, per pulse) was injected. The target was placed at an

azimuth of 0◦, elevation of 45◦, and normalized Doppler of 0.25 for a Doppler of

0.25fPRF = 496 Hz.

! Although clutter Doppler varies with elevation angle, e.g., range, the
realizations were formed on a block basis (using a single desired covariance
matrix to color white data) rather than on a snapshot-by-snapshot basis.
This approximation is valid when using small secondary data set sizes and
is commonly employed in STAP analysis. A limited Pd analysis using data
generated on a snapshot-by-snapshot basis verified the approximate results.
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Figure 4.14 shows Pd results for each array configuration (see Fig. 4.13) and

three baseline techniques, namely, the two-dimensional Adaptive Matched Filter

(2D-AMF) corresponding to fully adaptive STAP, the two-dimensional FTS (2D-

FTS) (traditional) method, and the 3D-FTS technique for the full array. Detection

thresholds were set such that all methods exhibited a constant Pfa of 0.001. To avoid

any effects of data dependency, each technique was evaluated using the same data.

As previously reported in [31, 32] and Sections 4.1-4.2, the 3D-FTS technique

offers a significant performance improvement when operating over the full rectangular

array. As Fig. 4.14 illustrates, detection performance equivalent to 2D-FTS can be

obtained with approximately 55 dB less SINR (per element, per pulse). These results

are somewhat misleading in that they neglect the effects of range ambiguous clutter.

Figure 4.15 incorporates range ambiguous clutter effects. Substantial improvement is

still demonstrated as 3D-FTS offers detection equivalence at > 30 dB less SINR. This

result is expected since there is not only a significant increase in available DOF (16

versus 8), but the planar array also provides resolution capability in both elevation

and azimuth, greatly increasing its ability to suppress ground clutter. Since the

elevation weights ignore range ambiguities, the results in range ambiguous clutter

can be further improved as previously noted.

The solid line with a circular marker in Fig. 4.14 denotes detection capability of

3D-FTS applied to a thinned array (configuration 3 of Fig. 4.13). As expected, per-

formance decreases relative to that obtained from 3D-FTS over the full array (solid
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Figure 4.14: Pd curves for Pfa = 0.001 without range ambigu-
ous clutter for 10,000 realizations.
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Figure 4.15: Pd curves for Pfa = 0.001 with range ambiguous
clutter for 10,000 realizations.
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line with inverted triangles). Of particular interest here, is the curve corresponding

to 3D-FTS operating on thinned array configuration 2 (solid line with diamonds). In

this case, detection performance is consistent with the that of full array operation.

Very little penalty is incurred as a result of the missing elements. Again, this data

is void of range ambiguous clutter effects.

Figure 4.15 presents range ambiguous clutter results. As expected, 3D-FTS

performance over the full array degrades from the previous case. This degradation

is entirely due to the 3D-FTS formulation and, as mentioned previously, could be

mitigated by incorporating the suppression of range ambiguous interference rings in

the 3D-FTS development.

Figures 4.16 and 4.17 present output SINR results (the Pd results are a function

of input SINR per element, per pulse) for the two cases of neglecting and including

range ambiguous clutter. The SINR curves are generated using known covariance,

hence there is no estimation loss. As expected (due to the equivalence of output

SINR maximization and detection probability maximization), these curves mirror

results of the Pd analysis in terms of their locations relative to each other.

4.3.1.1 Performance Bound. Of particular interest in Figs. 4.16 and

4.17 is the introduction of an upper performance bound. The 2D Matched Filter

(2D-MF) response (solid line with star), see Section 2.7, represents the bound for 2D

STAP in colored noise. The case where the data is only corrupted by unit variance

noise (identity covariance matrix, i.e., white noise) results in a constant bound given
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Figure 4.16: Output SINR curves using known covariance
without range ambiguous clutter.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-60

-50

-40

-30

-20

-10

0

10

20

30

PSfrag replacements

3D-MF

2D-MF

2D-FTS

3D-FTS

3D-FTS Thin 2

3D-FTS Thin 3

Output SINR (dB)

Normalized Doppler ω̄

3D-MF

2D-MF

2D-FTS

3D-FTS

3D-FTS Thin 2

3D-FTS Thin 3

O
u
tp
u
t
S
IN

R
(d
B
)

Normalized Doppler ω̄

Figure 4.17: Output SINR curves using known covariance with
range ambiguous clutter.
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by

SINR2D
Max = 10 log10MN. (4.16)

The 3D Matched Filter (3D-MF) (dashed line), see Chapter V, also exists and serves

as the 3D-FTS bound. This bound, for noise only interference, is given by

SINR3D
Max = 10 log10MNP. (4.17)

For parameters used in this work, the 3D bound is 27.09 dB. These bounds both

assume a unit amplitude target. Neglecting range ambiguous clutter (Fig. 4.16), the

3D-FTS technique is within 0.44 dB of this bound. The impact of range ambiguous

clutter is significant, as performance drops to a peak output SINR of approximately

3 dB in Fig. 4.17; 24 dB less than the bound. Again, the proposed method can

be greatly improved by modifying the first stage of the 3D-FTS formulation. The

proposed modification is reserved for Section 4.5.

Approaching the 3D-MF bound in severe interference environments requires all

available DOF, e.g., the 3D-AMF, a difficult if not impossible task. The 3D-AMF

requires 2MNP secondary data snapshots for covariance estimation, an amount

almost certainly unavailable for most practical values ofM , N , and P . Furthermore,

the extension to a planar array implies the clutter Doppler is now a function of range,

thereby violating the i.i.d. assumption required for secondary data snapshots.

! The use of constant N in Eqns. (4.16) and (4.17) corresponds to the
comparison used in this work. Specifically, the comparison drawn between 2D
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and 3D approaches, as presented in this document, constrains the number of
azimuth channels N and the number of pulses M . This constraint puts the
two methods on an equal footing in terms of azimuth and Doppler resolution.
The 3D approach gains the added elevation processing advantage. Reported
results give an improvement due to the extension to 3D, bounded to be no
less than 10 log10 P . Improvement is no less than this bound because 2D
methods typically cannot approach maximum output SINR in severe inter-
ference environments. Conversely, the robust nature of 3D methods allows
them to approach maximum output SINR. Hence, the difference between the
two approaches is a minimum of 10 log10 P dB.

A portion of the improvement could be attributed to the increase in total
DOF, depending on the interference scenario. In light of this argument,
future work could constrain the total DOF. The new SINR2D

Max would be
10 log10MN1 with SINR3D

Max = 10 log10MN2P . The equal DOF require-
ment is expressed asMN1 =MN2P and defines the relationshipN1 = N2P .
From these maximum output SINR expressions, a minimum improvement due
to the 3D extension would be N2P/N1 = 1. Hence, there would be no im-
provement in the ideal white noise limited case. However, simulations with
R 6= I (as shown in this work) would indicate significant improvement.

4.4 Factored Elevation with Joint Domain Localized Processing

One of the more robust STAP techniques is the 2D Joint Domain Localized

(2D-JDL) method [64], previously introduced in Section 2.7. Since adaptivity is

implemented in the azimuth-Doppler domain, the method is a beamspace approach.

Of particular interest is the analytical simplicity of the ideal target model when

transformed to the azimuth-Doppler domain. Given ideal conditions, a target is

projected into a single azimuth-Doppler bin inherently allowing adaptivity within

a small localized region. Using a small localized adaptivity region offers several

benefits. First, fewer DOF are needed, resulting in computational efficiency (when

compared to methods such as the 2D-AMF). Second, required sample support is
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drastically reduced in response to fewer DOF. This reduction in sample support

makes 2D-JDL performance less susceptible to heterogeneous clutter effects. For

these reasons, a three-dimensional variant of 2D-JDL appeared enticing for research

and was pursued next.

As mentioned in the progressive development of 3D-FTS, any adaptive process-

ing technique can follow the elevation beamforming in a factored approach. This sec-

tion develops a second factored approach, termed Elev-JDL. Obviously, the approach

remains suboptimum due to the inherent general limitations of factored approaches.

Chapter V explores 3D-JDL, a technique approaching optimality.

The overall approach to Elev-JDL is factored since elevation beamforming is

followed by 2D-JDL. A crucial distinction from 3D-FTS is that post beamforming

processing is joint domain, i.e., 2D-JDL. Therefore, Elev-JDL melds both factored

and joint domain approaches. Unfortunately, the technique remains suboptimal since

it can place nulls at particular points within the azimuth-Doppler plane but not at

particular points within the azimuth-Doppler-elevation hypercube.

The Elev-JDL concept is shown in Fig. 4.18. Array element data is first filtered

using elevation beamforming, essentially suppressing an entire range ring (covering

all azimuth extent and all Doppler shifts). The goal is clutter suppression while

avoiding target nulling. This filtering is adaptive on a range cell basis with the clutter

null centered at the clutter elevation angle in each (ambiguous and unambiguous)

136



PSfrag replacements

Elevation,
Doppler,
Azimuth
Data Doppler,

Az-
imuth
Data

Output
Applied to
Threshold

E
le
va
ti
on

In
te
rf
er
en

ce
S
u
p
p
re
ss
io
n

A
zi
m
u
th
-D

op
p
le
r
L
o
ca
li
ze
d

In
te
rf
er
en

ce
S
u
p
p
re
ss
io
n

Traditional 2D-JDL

Figure 4.18: Elev-JDL block diagram.

range ring. Contrary to the original 3D-FTS approach [31,32], subsequent azimuth-

Doppler interference suppression is achieved using 2D-JDL.

The proposed Elev-JDL technique is encapsulated as

(ETw2D)
H
χ = wHχ, (4.18)

where T and w2D are the 2D-JDL components of Eqns. (2.31) and (2.33) and E

is defined in Eqn. (4.21). Transformation operator T represents the conversion

from element-time-elevation space to azimuth-Doppler-elevation space. This op-

erator transforms the data to a localized region within the transform domain, where

“focused” adaptivity is implemented. This operator is identical to the one used in

2D-JDL, shown in Eqn. (2.31). However, the formulation here differs slightly in that
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the adaptive weights contained in w2D are calculated for the azimuth-Doppler space

region corresponding to the beamformed elevation angle from the first stage. The

difference is primarily conceptual since the actual adaptive weight calculations are

identical to that of the original 2D-JDL formulation described in Section 2.7.

4.4.1 3D Elev-JDL Results. The 3D Elev-JDL method is evaluated using

the same interference scenario found in the 3D-FTS evaluation, including an 8 × 8

planar array and M = 8 pulses. Table 4.1 contains the radar parameters specifically

chosen to match the MCARM radar. Again, the radar data was simulated using

the 3D model developed in Chapter III. Range ambiguous interference effects are

characterized by offering results both with and without these returns. As before, the

radar parameters result in ambiguous data consisting of the unambiguous clutter

response plus the clutter response from four range ambiguous regions.

Figure 4.19 shows output SINR results for each factored technique developed

in this chapter. For comparison, the 2D-MF filter is offered along with the 2D

counterparts for each factored method. The 2D-MF serves as the 2D performance

bound for this interference scenario, i.e., specific colored noise case. Given a noise

only interference scenario, the constant 2D performance bound is 10 log10 (MN) =

18.06 dB regardless of azimuth angle, elevation angle, or normalized Doppler. The

impact of mainbeam location, e.g., look direction, is evident only in the colored

interference case. The equivalent constant 3D performance bound, i.e., white noise
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Figure 4.19: Output SINR comparison, using known covari-
ance without range ambiguous clutter, for all proposed 3D fac-
tored techniques.

case, is 10 log10 (MNP ) = 27.09 dB. The 3D-MF is developed in Chapter V with

presentation of results reserved for that chapter.

Neglecting range ambiguous interference, the output SINR results for 3D-FTS

and Elev-JDL shown in Fig. 4.19 are nearly equivalent. Both techniques outperform

the 2D-MF by > 9 dB. As mentioned previously, this result does not violate a

performance bound. The two proposed factored approaches are 3D and constrained

the 3D performance bound. The two approaches produce 26.65 dB output SINR, or

0.44 dB below the 3D performance limit of 27.09 dB.

Figure 4.20 reports output SINR results when using range ambiguous clutter

data. Clearly, the impact is significant for 3D-FTS as evidenced by the more than
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Figure 4.20: Output SINR comparison, using known covari-
ance with range ambiguous clutter, for all proposed 3D factored
techniques illustrates Elev-JDL offers robust performance.

20 dB of degradation in performance. However, Elev-JDL appears extremely robust

and exhibits virtually no performance degradation. Since both factored approaches

use an identical elevation null formation method (neglecting range ambiguous clutter

suppression), the Elev-JDL robustness is clearly due entirely to the elegant 2D-JDL

method. These results indicate that a true 3D-JDL method is highly desirable and

such a technique would likely produce output SINR results surpassing that of Elev-

JDL. Research into 3D-JDL is presented in Chapter V.

As a reminder, the results presented to this point merely characterize range am-

biguous clutter impact on each technique of this chapter. The elevation beamforming
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method, as developed thus far, does not attempt to suppress range ambiguities. The

following section addresses this issue.

4.5 Range Ambiguous Interference Suppression

The original 3D-FTS formulations [31, 32] offer elevation adaptivity specifi-

cally designed to suppress interference only within the primary range ring; range

ambiguous interference effects are ignored. Incorporating range ambiguous interfer-

ence suppression into the original concept is relatively straightforward and required

for fair comparison to the joint domain methods of Chapter V. This requirement is

forced by the inherent ability of joint domain methods to suppress range ambiguous

clutter in elevation.

Two approaches are presented. The first technique is based entirely on aircraft

geometry relative to the spherical Earth model. Ground clutter elevation angles are

calculated based on this geometry and used to form elevation nulls. The second

approach is more suited for real-world application, i.e., the Earth’s surface does

not obey a strict spherical model. The second approach requires estimation of an

elevation-only covariance matrix.

4.5.1 Geometrical Approach. Consistent with the original elevation beam-

forming method,

we = C−1
e e (θ) , (4.19)

141



where elevation weights we are chosen to suppress clutter in the appropriate range

ring while maintaining a beam in the target direction and thereby adaptive on a

range cell basis. Using an operation paralleling Wiener filter theory, we and Ce (an

artificially generated interference covariance matrix designed to place null(s) at the

unambiguous clutter ring) are calculated from the filter look direction angle θ and

the angle to the clutter ring θc under consideration. This work modifies the original

Ce of Eqn. (4.10) to allow range ambiguous interference suppression,

Ce =
1

J

ηr
∑

k=1

J
∑

i=1

1

k
e (θik) e (θik)

H + σ2IP , (4.20)

where ηr represents the total number of range rings; five for the parameters of Ta-

bles 4.4 and 4.1. This formulation collapses to the original approach if ηr = 1. The

k−1 attenuation factor serves to embed a natural emphasis on the unambiguous range

ring, the largest interference source when considering range attenuation. Elevation

angles θik are defined as αi (θc)k, where (θc)k represents the angle to the kth clutter

ring and αi ∈ <. For this work i = 3 and α = {0.95 1.00 1.05}, forcing the elevation

null width to correspond to the range ring angular extent.

Elevation adaptivity is the achieved through

E = we ⊗ IMN , (4.21)
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a PMN ×MN matrix with IMN an MN ×MN identity matrix and we the P × 1

elevation weight vector. As before, the Kronecker product with the identity matrix

is required for consistency with the incoming data format.

A geometrical approach may experience degradation when operating in real-

world scenarios. This degradation occurs as the environment deviates from the

spherical Earth model used to formulate elevation null locations. Furthermore, air-

craft orientation must be incorporated into the (θc)k calculations.

4.5.2 Beamformed Statistical Approach. A more robust approach involves

estimating an elevation covariance matrix. This technique completely removes any

dependence on the spherical Earth model since it adapts to the current data set.

The elevation covariance matrix, replacing the artificial covariance matrix Ce,

first requires beamforming the data in azimuth and Doppler. These two beamforming

operations are performed separately, i.e., in a factored manner. The approach taken

here first constructs a NMP ×MP azimuth beamforming matrix A using the non-

adaptive azimuth steering vector,

A = IMP ⊗ a, (4.22)

where IMP is an MP ×MP identity matrix. The identity matrix ensures the non-

adaptive beamforming vector a is applied to the appropriate space-time snapshot

χ elements. The structure of χ motivates the operation’s form. The output of
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the operation, AHχ, is a MP × 1 vector representing the M pulse returns and P

elevation element returns at the azimuth angle φ contained in a.

The non-adaptive Doppler beamforming concept is identical, with the neces-

sary modifications for application to the azimuth beamformed space-time snapshot.

Construct the MP × P matrix

B = IP ⊗ b, (4.23)

where IP is a P × P identity matrix and b is the non-adaptive temporal steering

vector. The symbol B is used to distinguish this matrix from B, used previously for

an identical operation in concept, e.g., Doppler beamforming, but very different in

structure. The output of this beamforming operation, BHAHχ, is a P × 1 vector

representing the P elevation element returns at the azimuth angle φ contained in a

and the normalized Doppler frequency ω̄ contained in b. Notice the matrix product

AB is equivalent to

AB = IP ⊗ (b⊗ a) . (4.24)

The covariance matrix is found in the usual manner by examining the outer

product expected value,

RP = E
{

BHAHχχHAB
}

. (4.25)
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Obviously, for the case of known covariance this simplifies to

RP = BHAHRAB. (4.26)

The elevation weight vector is then calculated using the same method as before,

we = R−1
P e. (4.27)

This weight vector is then cast into the matrix form E shown in Eqn. (4.21).

Several variants of this approach are possible. The non-adaptive beamforming

could be replaced with some adaptive approach, although the utility of such a modi-

fication is limited. The reason is buried amid the actual purpose of the beamforming

operations in the technique. One must remember that the ultimate goal is an eleva-

tion interference covariance matrix reflecting only the sources negatively impacting

output SINR, and, ultimately, detection probability. In other words, some interfer-

ence sources will be suppressed in the subsequent azimuth and Doppler processing.

Hence, valuable elevation DOF should not be applied to those sources. Unfortu-

nately, elevation nulling is the first step in the factored approach and there is no

mechanism available to gather this information. The choice of elevation weights

directly impacts the following azimuth and Doppler adaptive weight calculations.

In terms of factored methods, the only compromise might be an iterative method

145



driving towards some optimum solution. However, joint domain methods alleviate

this limitation entirely, effectively negating any real need for research in this area.

4.5.3 Range Ambiguous Interference Suppression Results. The improve-

ment due to range ambiguous interference suppression is clearly seen through out-

put SINR analysis. Reported results correspond to known covariance, incorporating

range ambiguous returns, using the standard array configuration of this work. In

particular, this configuration corresponds to an 8 × 8 planar array with M = 8

pulses. Table 4.1 contains specific radar parameters such as pulse width, PRI, trans-

mit frequency, etc. Figures 4.21 and 4.22 offer output SINR results for each range

ambiguous suppression method developed in this chapter: no suppression, geometric

approach, and beamformed statistical approach. The first figure provides compari-

son data for all three methods. However, the scale required to show output SINR

for all three methods hides some important details. Fig. 4.22 compares only the

geometric and beamformed statistical techniques, allowing more appropriate scaling

and a discussion of these finer details.

Obviously, suppressing range ambiguous interference using either approach of-

fers significant performance gains. For example, Fig. 4.21 illustrates a ≈ 22 dB

output SINR improvement for 3D-FTS when using the geometric approach. Once

again, Elev-JDL robustness is apparent by its high output SINR when using no range

ambiguous interference suppression. However, even this technique experiences some

degradation as the look direction approaches mainbeam clutter, i.e., zero normal-
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Figure 4.21: Range ambiguous interference suppression, mea-
sured by output SINR, comparing all three approaches: no range
ambiguity suppression, geometric method, and beamformed sta-
tistical method.

ized Doppler (aliases to one). Introduction of the geometric suppression approach

removes this degradation.

Improvement gained by using the beamformed statistical approach, as com-

pared to the geometric method, is relatively small. Figure 4.22 is a plot of these two

techniques using an expanded y-axis scale. At peak output SINR, ≈ 2 dB improve-

ment is evident. Hence, the beamformed statistical method results in≈ 24 dB output

SINR improvement when compared to no range ambiguous interference suppression.

The flat line apparent in the two geometric applications, 3D-FTS and Elev-

JDL, indicates that practically all the interference is suppressed by the elevation
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Figure 4.22: Range ambiguous interference suppression, mea-
sured by output SINR, comparing two approaches: geometric
method and beamformed statistical method.

nulls. In the geometric method, elevation weights do not change as the look direc-

tion scans across normalized Doppler when generating output SINR curves. On the

contrary, the beamformed statistical approach results in a new adaptive elevation

weight set each time mainbeam changes, whether the look direction changes in az-

imuth, elevation, and/or normalized Doppler. Hence, the statistical technique offers

improved elevation null location and corresponding output SINR improvement.

The results presented here use simulated covariance matrices. The data model

of Chapter III uses the spherical Earth model that also serves as the geometrical ap-

proach foundation. Hence, the beamformed statistical approach matches this data

and produces results with relatively small improvement over the geometrical ap-
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proach. If real-world data utilizing more than two vertical channels were available, a

comparative analysis of the two approaches would show the beamformed statistical

method is more robust and the geometric approach would degrade.

4.6 Summary

Classic 2D STAP technique limitations include large computational load and

large secondary data sets. Community response has focused on developing com-

putationally efficient reduced dimension algorithms, from which 2D-FTS evolved.

Although 2D-FTS provides the desired reduction in DOF, a performance penalty is

incurred.

The work presented in this chapter develops and characterizes a new class

of factored 3D adaptive processing algorithms. In general, these techniques offer

distinct advantages over 2D methods through elevation based clutter suppression.

For a 3D proof-of-concept, elevation interferometry was fused with 2D-FTS to

provide clutter suppression. Results based on actual airborne radar data indicate the

proposed technique is very effective while providing little increase in computational

intensity. The initial 3D proof-of-concept was limited to two elevation channels for

comparison and validation with available measured data.

The full 3D-FTS method has no such limitations on the number of elevation

channels. Through standard beamforming techniques, an elevation null was formed

in the direction of ground clutter based on radar platform geometry and a spherical
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Earth model. For the 8 × 8 rectangular array considered, 3D-FTS demonstrated

significant performance improvements over 2D-FTS using the ULA (single row of

the rectangular array). Further enhancement was possible through range ambigu-

ous clutter suppression, given the framework presented in the first iteration ignored

range ambiguous clutter. An elevation null was formed only for the single unambigu-

ous clutter elevation angle. The modification is straightforward with two different

approaches presented in Section 4.5.

The 3D-FTS method [31, 32, 34], operating within the azimuth-Doppler-elev-

ation hypercube, effectively mitigates the performance penalty associated with re-

duced dimensionality by adding elevation processing without increasing secondary

data support. Improved performance over a two-dimensional fully adaptive algo-

rithm operating within the azimuth-Doppler plane was demonstrated for the range

unambiguous clutter case; secondary data support remains the same as 2D-FTS.

Furthermore, target height discrimination is inherently provided through elevation

beamforming. However, extension into the elevation domain dictates the estab-

lishment of a new upper performance bound, i.e., the performance provided by a

three-dimensional fully adaptive processor. This new performance bound is fully

addressed in Chapter V.

The results presented approach fully adaptive 2D STAP performance (operat-

ing on a ULA) using a much smaller training interval. In fact, the training interval

is reduced by a factor of M . Fully adaptive STAP could be directly applied to the
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8× 8 rectangular array considered. However, even if results could be obtained, they

would likely be inferior to the 3D-FTS results presented here for one primary reason:

extending STAP into the azimuth-Doppler-elevation hypercube provides the ability

to resolve responses in both elevation and azimuth. As discussed in [16, 69, 70],

this two-dimensional angle resolution capability “greatly complicates” the clutter

Doppler situation since clutter Doppler is now range (elevation angle) dependent

and the fundamental i.i.d. assumption is violated. Therefore, estimating interfer-

ence statistics in range requires smaller training intervals where the clutter essen-

tially satisfies the i.i.d. requirement in an approximate sense. However, extension to

fully adaptive 3D-STAP results in a corresponding DOF increase and training inter-

val size (dictated by the sample support requirement). Therefore, satisfying both is

impossible and no realistic compromise exists. The development of the 3D-MF, and

consequently the 3D-AMF, is addressed in Chapter V.

The factored 3D-FTS approach not only offers easy application of STAP pro-

cessing to a rectangular array, but also operates effectively on a thinned array of

quasi-circular elements. As included in the proposed method, elevation adaptiv-

ity fosters other concepts for providing potentially significant performance improve-

ments. Heterogeneous clutter has long been the nemesis of many STAP techniques,

given the inherent inability to obtain accurate interference estimates. Heteroge-

neous clutter effects can perhaps be diminished through elevation processing since

interference over an entire range ring can be reduced. There is also potential for im-
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proved jammer suppression and enhanced performance in environments containing

hot clutter regions, given the localized (angular) nature of such interference and the

ability to form elevation nulls. This leads directly to the hybrid concepts proposed

in Chapter VI.

The final factored method developed in this chapter was Elev-JDL. Even with-

out range ambiguous interference suppression, the technique offered excellent per-

formance on data containing range ambiguous clutter. The robustness of the joint

domain 2D-JDL method was evident in the results. These results indicate a true

3D joint JDL method, 3D-JDL, is highly desirable and would likely produce output

SINR surpassing that of Elev-JDL. Research in the 3D-JDL area is presented in

Chapter V.

To conclude the factored 3D development, and allow fair comparison to the 3D

joint domain methods of Chapter V, two range ambiguous interference suppression

techniques were considered. The first technique is based entirely on the physical ge-

ometry of the radar platform and the spherical Earth model. The second technique

implements a statistical method for elevation null placement. Due to the unavailabil-

ity of measured data for more than two vertical channels, performance was evaluated

using the simulated data based on the 3D model of Chapter III. Although the model

compares very well to actual measured airborne radar data, it is based upon a spheri-

cal Earth model. Hence, the results of both elevation null placement techniques were

nearly identical (within 2 dB). In actual airborne radars, the Earth does not strictly
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follow a spherical model and the geometric approach will likely suffer performance

degradation while the statistical approach remains relatively robust.
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V. Three-Dimensional Joint Domain Methods

Radar Space-Time Adaptive Processing (STAP) techniques have classically fo-

cused on azimuth-Doppler adaptivity while placing minimal emphasis on el-

evation. Elevation adaptivity offers significant clutter suppression improvement,

allowing further suppression of interference sources having identical Doppler and

azimuth as the expected target.

The previous chapter incorporated elevation adaptivity using factored ap-

proaches, greatly improving clutter suppression performance. Conversely, this chap-

ter focuses on joint domain techniques. First, the three dimensional matched filter

is derived using three different approaches. As in the 2D case, the three approaches

generate identical filters (within a scale factor), showing equivalence.

Unfortunately, the interference encountered in actual airborne radar scenar-

ios is not known a priori. This fact forces construction of adaptive methods for

estimated covariance. The most obvious approach is the Adaptive Matched Filter

(AMF), where the estimated covariance matrix is substituted into the matched filter.

This approach generates well known practical limitations even in the 2D case. As

expected, the extension to 3D further compounds these limitations.

The desire to generate a practical 3D adaptive interference suppression method

motivates this research. The subject of this research, and subsequently the main goal

of this chapter, involves one of the more robust 2D STAP techniques: the 2D Joint

Domain Localized (2D-JDL) method [64]. This method is a beamspace approach

with adaptivity implemented in the azimuth-Doppler domain. Of particular inter-

est is the analytical simplicity of the ideal target model when transformed to the

azimuth-Doppler domain. Given ideal conditions, a target is projected into a single

azimuth-Doppler bin, inherently allowing adaptivity within a small localized region.

Using a small localized adaptivity region offers several benefits. First, fewer Degrees

Of Freedom (DOF) are needed, directly resulting in tremendous computational ef-
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ficiency (when compared to methods such as the AMF). Second, required sample

support can be drastically reduced in response to fewer DOF. This reduction in

sample support makes 2D-JDL performance less susceptible to heterogeneous data

effects. For these reasons, a three-dimensional variant of 2D-JDL is an enticing

subject for research.

This chapter implements a true 3D Joint Domain Localized (3D-JDL) adaptive

processor within the azimuth-Doppler-elevation space [35]. The proposed concepts

are validated using results based on simulated range ambiguous airborne radar data.

Target detection improvement on the order of 10 dB (as compared to standard 2D-

JDL processing) is demonstrated for the 3D-JDL approach using an 8×8 non-uniform
rectangular array.

This research extends previous work of Chapter IV and [31,32] by removing the

inherent limitations of a factored approach; interference suppression using a factored

approach is suboptimal at best. By design, the factored method suppresses an entire

range ring in elevation and lacks the ability to place null(s) at specific locations

in azimuth, Doppler, and elevation. Although a 3D-AMF is capable of achieving

near optimal performance, it is impractical for several reasons. Hence, a 3D-JDL

development is offered and shown capable of placing nulls at distinct locations in the

azimuth-Doppler-elevation space.

5.1 Matched Filter

A discussion of 3D joint domain methods necessarily begins with the optimum

filter. As mentioned in Chapter II, the optimum 2D filter can be found using three

different methods. Equivalence of the likelihood ratio processor, maximum SNR

filter, and Wiener filter for the 2D case is well established [18]. Development of

three optimum filters for the 3D case is presented in the following subsections. As

in the original 2D development, equivalence of each approach is shown.
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! Each of the 3D approaches result in a filter for known mean and covari-
ance. In general, this condition is not the case. However, the resultant filter
performance serves as a bound for comparing partially adaptive techniques
with known interference statistics.

5.1.1 Likelihood Ratio Processor. Detecting a signal embedded in inter-

ference can be accomplished using hypothesis testing. As discussed in [37], two

criteria are of interest for hypothesis testing: the Neyman-Pearson and Baye’s cri-

terions. The Neyman-Pearson test is particularly interesting for the radar problem

because it involves maximizing detection probability subject to a false alarm prob-

ability constraint. Regardless, both tests are based on generating a test statistic,

called the likelihood ratio, which is subsequently compared to a threshold. As fur-

ther noted [37], simple binary hypothesis testing (target present or no target present)

results in two cases. The first case occurs when the interference (noise) is both white

and Gaussian; the likelihood ratio test yields a matched filter. Conversely, colored

Gaussian interference, with known mean and correlation matrix, yields a whitening

filter followed by a matched filter.

The likelihood ratio is formed from the hypothesis test. Consider the two

hypotheses,

H0 : χ = χn + χc + χj (5.1)

H1 : χ = v + χn + χc + χj, (5.2)

where the null hypothesis H0 corresponds to interference only (noise, clutter, jam-

mer) while the hypothesis H1 includes the target return (v) plus interference. Under

the model of Chapter III, the interference is assumed Gaussian with zero mean and

covariance matrix R. Therefore, the joint probability density functions for the two
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hypotheses are (complex valued χ) [40]

pH0 (χ) =
1

πNMP det (R)
exp

(

−χHR−1χ
)

(5.3)

pH1 (χ) =
1

πNMP det (R)
exp

[

− (χ− v)H R−1 (χ− v)
]

, (5.4)

where NMP represent the length of the space-time snapshot χ and target space-

time steering vector v, and is also the dimension of the NMP × NMP covariance

matrix R.

The likelihood ratio is defined as the ratio of the two probability density func-

tions,

l(χ) =
pH1

pH0

. (5.5)

Substituting in Eqns. (5.3) and (5.4) and taking the natural log produces the log

likelihood ratio

L (χ) = ln [l(χ)] = vHR−1v −
∣

∣vHR−1χ
∣

∣

2
. (5.6)

Since l is compared to some threshold α,

l(χ)
H1

≷
H0

α, (5.7)

then the natural log of l is an equivalent operation and L can be also compared to

the threshold,

L(χ)
H1

≷
H0

lnα. (5.8)

In a similar fashion, the scalar terms can also be folded into the threshold

vHR−1v −
∣

∣vHR−1χ
∣

∣

2 H1

≷
H0

lnα (5.9)

∣

∣vHR−1χ
∣

∣

2 H1

≷
H0

vHR−1v − lnα. (5.10)
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Defining a new threshold β yields

∣

∣vHR−1χ
∣

∣

2 H1

≷
H0

β, (5.11)

where the weight vector is clearly evident from the expected form wHχ, i.e,

∣

∣wHχ
∣

∣

2
=
∣

∣vHR−1χ
∣

∣

2
(5.12)

or, more explicitly, the “infamous”

w = R−1v. (5.13)

As predicted by [37], the likelihood ratio test results in a filter w consisting of two

components: a whitening filter represented by R−1 and a matched filter v. The

matched filter is “matched in the sense that its impulse response equals the time-

reversed version of the known signal” [37]. To conform with common literature, the

entire filter w of Eqn. (5.13) is referred to as the matched filter in this work.

Clearly, the 3D version of the matched filter is identical to its 2D counterpart

shown in Eqn. (2.27). This result is expected since the 3D data model does nothing

to change the data distribution. The radar returns are still modeled as Gaussian

distributed with a covariance matrix R. The 3D extension to incorporate elevation

merely changes the form of R.

5.1.2 Maximum Signal-to-Interference Plus Noise Ratio Filter. Mirroring

the original 2D equivalence proof in [18], the next approach is to solve for the opti-

mum filter by maximizing SINR. The 3D proof is relatively straightforward. First,

assume an optimum weight vector wo exists and evaluate the SINR

SINR =
E
{

∣

∣wH
o v

∣

∣

2
}

E
{

∣

∣wH
o

(

χn + χc + χj
)∣

∣

2
} . (5.14)
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The numerator represents the output power resulting from the optimum weight vec-

tor operating on the target return. The denominator represents the output power

resulting from the optimum weight vector operating on the interference sources. The

target model in this work is not random, hence the expected value operator in the nu-

merator has no effect. Using this fact and simplifying the denominator term results

in

SINR =

∣

∣wH
o v

∣

∣

2

wH
o Rwo

. (5.15)

Determining the appropriate contents of wo is somewhat challenging, although

no more so than the likelihood ratio processor. This approach used is identical to

the 2D variant of [18]. First, expand the terms into

SINR =
wH
o R

1
2R− 1

2vvHR− 1
2R

1
2wo

wH
o R

1
2R

1
2wo

. (5.16)

Now define the unit vector,

u =
R

1
2wo

∣

∣

∣

∣

∣

∣
R

1
2wo

∣

∣

∣

∣

∣

∣

, (5.17)

where || · || represents the Euclidean norm, e.g., Frobenius norm [27]. Substituting

back into the SINR expression results in

SINR =
∣

∣

∣
uHR− 1

2v
∣

∣

∣

2

. (5.18)

Since u is a unit vector, this expression is maximized by choosing u such that

it lies directly on the whitened target signal return, or

u ∝ R− 1
2v. (5.19)

Using this result in Eqn. (5.17) allows a solution for the weight vector producing the

maximum SINR,

wo ∝ R−1v
(

wH
o Rwo

)
1
2 . (5.20)
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The last term in this equation is merely a scalar. Therefore, the resultant optimum

weight vector wo is equivalent to the likelihood ratio processor of Eqn. (5.13),

w ∝ R−1v. (5.21)

5.1.3 Wiener Filter. Since the class of linear optimum discrete-time filters

all reduce to the Wiener-Hopf equations, they are collectively known as Wiener Fil-

ters [37]. This section derives the Linearly Constrained Minimum Variance (LSMV)

beamformer and shows equivalence to the maximum SINR filter and likelihood ratio

processor.

The LSMV beamformer derivation is academic. The filter output power given

a weight vector wo is

E
{

∣

∣wH
o χ

∣

∣

2
}

= wH
o Rwo. (5.22)

The object is to minimize this output variance subject to a linear constraint. For

the radar problem, a realistic constraint is mainbeam power in the target direction,

wH
o v = g, (5.23)

where g is a complex parameter typically set to unity. Using the method of Lagrange

Multipliers [63, page 693], the Lagrangian cost function to be minimized is

Q = wH
o Rwo + λ

(

g −wH
o v

)

+ λ∗
(

g∗ − vHwo

)

, (5.24)

where λ is the complex Lagrange multiplier. Continuing with the constrained opti-

mization method, the optimum weight vector wo minimizing Q is derived as follows,

∇w∗
o
Q = Rwo − λv = 0 (5.25)

wo = λR−1v, (5.26)
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where 0 is the zero vector and ∇w∗
o
is the gradient with respect to w∗

o. Although not

important to the derivation here, the scalar λ is found by using the constraint and

substituting back into the optimum weight vector expression of Eqn. (5.26) to get

λ =
g

vHR−1v
(5.27)

wo =
gR−1v

vHR−1v
. (5.28)

As expected, the LSMV filter is equivalent to those found for minimum SINR and

maximum likelihood, or

wo ∝ R−1v. (5.29)

The normalization factor (denominator) in Eqn. (5.28) results in a form very

similar to the CFAR test statistic of [21,51]. Substituting the optimum weight vector

into the output power expression results in

E
{

∣

∣wH
o χ

∣

∣

2
}

=
|g|2

vHR−1v
. (5.30)

Clearly, the filter output power, if used as a test statistic, is dependent on the actual

noise power present and the test is not CFAR. However, this dependence is easily

removed by redefining the weight vector as

w =
gR−1v√
vHR−1v

. (5.31)

Using this weight vector, the output power becomes independent of the interference

and the test statistic is CFAR [21,51].
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5.2 Adaptive Matched Filter

The 3D Adaptive Matched Filter (3D-AMF) is introduced here for comparison

to 2D. As shown, the filter is impractical for actual implementation for a variety of

reasons.

The 3D-AMF essentially results in replacing the known covariance R in the

3D-MF with its maximum likelihood estimate R̂. The utility of this adaptive filter

is limited for practical reasons. First, consider the dimensionality of R in the case of

3D data. Since R is of dimension NMP ×NMP , 2MNP secondary data samples

are required to achieve output results within 3 dB of the 3D-MF, analogous to Reed’s

Rule for the 2D-AMF [49]. In practical airborne radar systems, there simply is not

enough secondary data to meet this requirement; the 2D-AMF has been all but

discarded for this very reason. Furthermore, computational considerations when

inverting a matrix of this size can become prohibitive for real-time operation.

Even if the large number of secondary data was available, the i.i.d. require-

ment is almost certainly violated. Since secondary data is obtained from the range

dimension, the terrain characteristics spanning 2NMP range cells would vary widely

except in unusual circumstances.

Given the variety of practical limitations, the 3D-AMF technique is largely

ignored for this work. Alternatively, focus is placed on more practical methods.

5.3 Joint Domain Localized

The 3D-JDL adaptive processing approach mirrors that of the original 2D-

JDL formulation [64] but includes the required elevation extension. The proposed

adaptive processing technique, termed 3D-JDL, is encapsulated as

vHT
(

THRT
)−1

THχ = wH
3DT

Hχ, (5.32)
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Figure 5.1: Ideal 3D-JDL block diagram. The transformation is shown only for the
range cell under test, all data is transformed. Due to steering vector orthogonality
(ideal case), the target is localized to the LPC center bin.

where interference covariance matrix R is of dimension NMP ×NMP and reflects

the covariance between the planar array (spatial sampling) and temporal samples.

The 3D adaptive weight vector w3D operates on the transformed data THχ, hence

the method is a joint domain or beamspace approach. A diagram of the proposed

method is presented in Fig. 5.1. Superficially, the mathematical form of Eqn. (5.32)

is identical to the 2D concept of [64]. The fundamental difference is embedded within

the matrices themselves.

Transformation operator T of Eqn. (5.33) provides conversion from element-

time space to azimuth-Doppler-elevation space. This operator transforms the data

to a localized region within the transform domain, where “focused” adaptivity is

implemented. The 3D transformation matrix is similar to the 2-D implementation

with adjustments made to generate a Localized Processing Cube (LPC), similar to

the Localized Processing Region (LPR) of the 2D-JDL case,

T =
[

e(θ−1) e(θ0) e(θ1)
]

⊗
[

b(ω̄−1) b(ω̄0) b(ω̄1)
]

⊗
[

a(φ−1, θt) a(φ0, θt) a(φ1, θt)
]

. (5.33)
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The T of Eqn. (5.33) corresponds to a 3 × 3 × 3 LPC. Generically, the LPC size is

ηa×ηb×ηe making T of dimension NMP ×ηaηbηe, where ηa ≤ N represents the size

in azimuth, ηb ≤M represents the size in Doppler, and ηe ≤ P represents the size in

elevation. Bounding each LPC dimension ensures the interference covariance matrix

across the cube remains nonsingular. The bounds also ensure a level of generality,

i.e., the 3D identically model collapses to conventional 2D-JDL when P = 1. LPC

size is variable and scenario dependent; interference problems of higher-order require

a larger LPC to achieve results approaching the 3D-AMF.

! The 3D-AMF, albeit approaching practical impossibility, provides an
upper performance bound in the estimated interference case given homo-
geneous space-time snapshots. Although the Pd analysis does not include
3D-AMF results due to computational limitations, output SINR results do
include the 3D-MF since known covariance removes the practical limitations.

The LPC covariance matrix is found by

RLPC = E
{

THχχHT
}

, (5.34)

and is of dimension ηaηbηe × ηaηbηe corresponding to a potential ηaηbηe ≤ NMP

DOF (weight vector w3D length). The weights (Wiener filter) are calculated using

the transformed steering vector,

w3D = R−1
LPCT

Hv. (5.35)

The 3D method identically collapses to 2D-JDL in the P = 1 case resulting in,

w2D = R−1
LPCT

H (a⊗ b) , (5.36)

where T and RLPC correspond to the P = 1 case. The conventional Maximum

Likelihood Estimator (MLE) of the interference covariance (R̂LPC) within the LPC
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Table 5.1: Radar simulation parameters.

Parameter Value

Aircraft Altitude 9 km
Transmit Frequency 1.24 GHz
Pulse Repetition Frequency (PRF) 1984 Hz
Pulse Width 50 µsec
Az (dx) & El (dz) Channel Spacing 0.1092 m/0.1407 m
Az (N) & El (P ) Channels 8/8
Pulses per CPI (M) 8

is substituted for RLPC in the estimated interference case. Required secondary data

support for the MLE is 2ηaηbηe, to achieve performance within 3 dB of known co-

variance [49].

5.4 3D-JDL Results

Radar data was simulated using the 3D model described in Section III. For

comparing the proposed techniques, a simulated target with 496 Hz Doppler shift at

an azimuth angle of 0◦ and elevation angle of 45◦ was used. Reported results corre-

spond to an 8× 8 planar array (side-looking) using a CPI of eight pulses (resulting

in eight Doppler bins) with parameters given in Table 5.1, identical to Table 4.4, to

allow comparison of results between factored and joint approaches.

Performance results are characterized using two metrics: 1) output SINR and

2) detection probability (Pd). Output SINR represents detection capability for known

interference statistics and unity target amplitude (amplitude variation merely scales

the results). Consistent with [65], the SINR metric is plotted versus normalized

Doppler. The Pd metric is essentially the ultimate characterization metric for a radar

system. The Pd results are presented for fixed false alarm rate (allowing side-by-side
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comparison) as a function of input SINR per element, per pulse. These results were

obtained using Monte Carlo simulation (estimated interference statistics) where the

number of realizations is equal to 10P−1
fa . For Pfa = 0.01, the simulations used 1,000

realizations.

5.4.1 Output SINR. Figure 5.2 presents output SINR versus normalized

Doppler for the techniques considered. This figure introduces upper performance

bounds (dashed lines) based on dimensionality. The 2D Matched Filter (2D-MF)

represents the bound for conventional 2D STAP operating in colored noise. Hence,

2D-MF output is scenario, i.e., colored noise realization, dependent. Given data only

corrupted by unit variance noise (identity covariance matrix), the constant 2D STAP

bound is [65]

SINR2D
Max = 10 log10MN. (5.37)

The 3D Matched Filter (3D-MF) operating in unit variance white noise serves as a

the constant upper bound for the proposed Elev-JDL and 3D-JDL techniques. This

bound is given by

SINR3D
Max = 10 log10MNP. (5.38)

For parameters of this work, the constant 3D bound of Eqn. (5.38) is 27.09 dB.

Results for the 3D-MF (dashed line with star) operating in the colored noise of this

scenario are shown in the figure. Achieving 3D-MF performance in severe interference

environments requires all available DOF. The 3D-AMF requires 2MNP secondary
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data snapshots for covariance estimation, an amount most likely unavailable for

practical values of M , N , and P . Furthermore, extension to include planar arrays

dictates clutter Doppler is a function of range, thereby violating the i.i.d. assumption

required for secondary data snapshots.

! The use of constant N in Eqns. (5.37) and (5.38) corresponds to the
comparison used in this work. Specifically, the comparison drawn between 2D
and 3D approaches, as presented in this document, constrains the number of
azimuth channels N and the number of pulses M . This constraint puts the
two methods on an equal footing in terms of azimuth and Doppler resolution.
The 3D approach gains the added elevation processing advantage. Reported
results give an improvement due to the extension to 3D, bounded to be no
less than 10 log10 P . Improvement is no less than this bound because 2D
methods typically cannot approach maximum output SINR in severe inter-
ference environments. Conversely, the robust nature of 3D methods allows
them to approach maximum output SINR. Hence, the difference between the
two approaches is a minimum of 10 log10 P dB.

A portion of the improvement could be attributed to the increase in total
DOF, depending on the interference scenario. In light of this argument,
future work could constrain the total DOF. The new SINR2D

Max would be
10 log10MN1 with SINR3D

Max = 10 log10MN2P . The equal DOF require-
ment is expressed asMN1 =MN2P and defines the relationshipN1 = N2P .
From these maximum output SINR expressions, a minimum improvement due
to the 3D extension would be N2P/N1 = 1. Hence, there would be no im-
provement in the ideal white noise limited case. However, simulations with
R 6= I (as shown in this work) would indicate significant improvement.

As expected, 2D-JDL performance (solid line with box) approaches SINR2D
Max

for the clutter environment under consideration. Compared to 2D-JDL, the pro-

posed Elev-JDL factored approach offers substantial improvement in output SINR,

almost 8.5 dB, while the proposed 3D-JDL method (solid line with circle) offers

10.25 dB improvement. Of particular interest is the lack of blind speeds for the

Elev-JDL factored approach. By suppressing entire rings of ambiguous interference,
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range ambiguous clutter. Dashed lines represent corresponding
upper bounds.

the factored method offers better suppression than the 3D-JDL approach as the look

direction approaches mainbeam Doppler (ω̄ → 0). Although blind speeds are mit-

igated, they are not entirely removed. As the look direction, or potential target,

approaches mainbeam clutter in all three dimensions (azimuth, Doppler, and eleva-

tion), all methods suffer degradation since there is no remaining dimension to discern

a target. Obviously, this worst case scenario is more likely to occur in the 2-D case

since the target only has to approach mainbeam clutter in azimuth and Doppler.

The 3D-JDL performance can be further improved by increasing the LPC size,

set to 3× 3× 3 for results presented here. Of particular interest, the 3D-JDL tech-

nique makes better use of available DOF. As the target moves away from mainbeam

168



clutter in Doppler, 3D-JDL performance edges out the factored approach due to

more optimal null placement. Blind speeds could be completely mitigated, as in the

factored approach, given a larger LPC and more DOF.

5.4.2 Detection Probability. Detection probability (Pd) results should be

consistent with output SINR results since the two metrics are interrelated. Compar-

ison of Fig. 5.2 with the Pd results of Fig. 5.3 shows this is the case. False alarm

probability (Pfa) is held constant at 0.01 for each technique, using 1,000 realizations

for the Monte Carlo analysis. Interference statistics estimation was accomplished

using the appropriate MLE for R for each technique according to Reed’s Rule [49].

Figure 5.2 output SINR results at ω̄ = 496/1984 = 0.25 provide expected

relative detection performance, under the case of known interference statistics, for

each technique. As Fig. 5.3 illustrates, the detection results under the case of es-

timated interference statistics follow these performance expectations. The bottom

axis of the figure corresponds to input SINR per element, per pulse. For the given

target location of φ = 0, θ = 45, and ω̄ = 0.25, 3D-JDL offers the best detection

performance.

5.5 Summary

The proposed three-dimensional methods offer significant detection perfor-

mance improvement over current two-dimensional adaptive techniques for airborne

radar. Including work from the previous chapter, two proposed 3D STAP classes were
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considered, including 1) suboptimal factored methods offering improved interference

rejection by placing nulls in elevation (suppressing entire range rings) and 2) opti-

mal joint domain methods offering improved interference rejection by placing nulls

at particular locations in elevation, azimuth, and Doppler. This chapter focused on

joint domain techniques.

Three joint domain methods were presented. First, the 3D-MF offers opti-

mal performance in the case of known interference statistics. Unfortunately, the

airborne radar interference statistics are not known a priori. This limitation led to

the introduction of the 3D-AMF, essentially the 3D-MF with estimated second-order
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interference statistics. A variety of practical limitations preclude the use of this filter

for real-time operation in actual airborne radar scenarios.

The main goal of this chapter involved development of a proposed 3D-JDL

technique. This technique is a locally adaptive approach operating in beamspace

with performance approaching optimal – optimal performance is defined as that

of the matched filter. The 3D-JDL results speak for themselves: excellent target

detection capability was demonstrated with small sample support requirements and

limited computational load. The small sample support requirement translates to an

inherent resistance to heterogeneous data, a generic benefit of joint domain localized

concepts.

The factored techniques of previous chapters, 3D-FTS and Elev-JDL, offer a

brute force approach to addressing the interference problem. Since range ambiguous

ground clutter serves as the most significant problem in airborne radar, Section 4.5

offered a modified elevation approach mitigating its impact by attempting to suppress

all ground clutter using elevation null(s). As mentioned there, this modified approach

was required to permit fair comparison to the joint domain methods presented in this

chapter. The 3D factored techniques require no increase in sample support over their

2D counterparts, since the elevation filter calculation is based entirely on physical

parameters. Furthermore, the proposed 3D factored approaches incur little increase

in computational burden.
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The more optimal approach is 3D-JDL, the locally adaptive beamspace method

in all three dimensions. This method approaches optimality because it maintains the

capability to place null(s) at distinct locations in azimuth, Doppler, and elevation.

As a consequence of incorporating elevation adaptivity, there is only a marginal

increase in required sample support.
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VI. Three-Dimensional Hybrid Approach

At this point in the research, the 3D research chain of Fig. 1.2 is nearly complete.

Chapter III constructed the 3D data model, Chapter IV developed a variety

of suboptimal factored approaches to the 3D interference suppression problem, and

Chapter V developed optimal joint domain approaches including a partially adaptive

3D-JDL method. All work presented to this point focused on homogeneous data.

This chapter addresses target detection within heterogeneous data.

Hybrid methods were borne out of a basic realization, namely, a fundamental

question was raised given the ability to detect heterogeneous data. The impact of

heterogeneous data on target detection within homogeneous locations was effectively

mitigated through various techniques of secondary sample support selection. Yet,

there was no answer on how to detect targets within locations deemed heterogeneous.

Consequently, the the first hybrid technique was invented [5–7,33].

The original 2D hybrid method presented in Section 2.8 is founded on the 2D-

JDL approach where a transformation is necessary to apply interference suppression

in the azimuth-Doppler beamspace. In the original 2D-JDL formulation [64], the

ideal transform is used. For simulated data, the ideal transform is a set of steering

vectors or DFT matrix columns. In this ideal world, a target is localized to a

single azimuth-Doppler bin and the localized adaptivity region in beamspace is easily

scaled. Subsequent research [4, 6–8, 10] determined that real-world antenna array

effects resulted in performance degradation. A more appropriate transform was the

actual measured array steering vectors, containing mutual coupling effects, array

element mismatch effects, etc.

A side benefit of improving the transformation was the realization that this

transformation could be used for other purposes. Instead of using the transform to

merely reach the azimuth-Doppler beamspace, the transform could be used to simul-
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taneously provide uncorrelated interference suppression. This realization spawned

the birth of hybrid interference suppression techniques.

The literature devoted specifically to hybrid methods is limited primarily due

to the newness of the concept. This chapter builds on the original 2D method

through an elevation adaptivity extension.

The original 2D method suffers from several drawbacks. First, the general lim-

itations of a factored approach for deterministic adaptivity are suboptimal. A joint

deterministic method would be more suitable. Second, the order of processing is a

perceived drawback. A solution to this perceived drawback is offered in Section 6.2,

namely the inverse hybrid method. Finally, an inherent differencing operation be-

tween two adjacent elements incurs inadvertent suppression of interferers within the

interference estimate. A solution for this final problem is offered in Section 6.3 for

the case of known interferer location.

One proposed method, termed the inverse hybrid, essentially reverses the pro-

cessing order of the original 2D hybrid technique. A perceived drawback of the

original 2D approach involves the inability of deterministic techniques to distinguish

between correlated and uncorrelated (discrete) interference. Since the original 2D

approach first implements deterministic adaptivity, the potential exists to expend

valuable DOF suppressing correlated interference. Such interference is better sup-

pressed in the statistical processing stage. By reversing the processing order, corre-

lated interference is first removed, effectively freeing the following deterministically

adaptive stage for residual discrete interferer suppression. The actual development

of such an approach is much more complicated than the concept and is addressed

fully.

Finally, a concept having substantial processing benefits and performance im-

provement over the original approach is offered. Given known interferer location, a

null is easily placed. Excellent results in homogeneous data can be obtained with

practically flawless operation in heterogeneous data. Clearly, interferer location is not
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Figure 6.1: 3D original hybrid extension block diagram. The transformation is
shown only for the range cell under test, all data is transformed.

known a priori. However, the concept is sound and techniques capable of accurately

locating discrete interference sources can be developed. The design considerations

for such approaches are considered in limited detail with full development reserved

for future research.

6.1 3D Extension of the Original 2D Hybrid Technique

The 3D hybrid concept mirrors the original 2D hybrid approach. The work

in this section represents a non-trivial extension into the azimuth-Doppler-elevation

space rather than a complete redesign. Figure 6.1 is a block diagram illustrating

the proposed extension. As in the original 2D work, the general processing flow

is identical to the joint domain localized concept. The incoming space-time data

is adaptively transformed to the azimuth-Doppler-elevation space (the original 2D

work uses only the azimuth-Doppler space) where localized statistical adaptivity is

implemented.

The 3D extension differs from the original 2D method in two primary ways.

First, the adaptive transform is three-dimensional and remains non-stochastic (de-

terministic). The factored nature of the adaptive transform is preserved. Hence, the

azimuth and Doppler portions of the 3D method are conceptually identical to their

2D counterparts. However, the elevation technique is new. Second, the localized sta-
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tistical adaptivity within the beamspace now operates across all three dimensions, as

compared to two dimensions in the original 2D hybrid. Each facet of the 3D hybrid

extension is developed in the following subsections.

6.1.1 3D Deterministic Processing. Statistical techniques fail to counter

heterogeneities in the range cell under test, motivating deterministic or direct data

domain technique research. These techniques use only primary range cell (range cell

under test) data, eliminating sample support problems associated with statistical

approaches. This research field has recently emerged with a focus on one-dimensional

spatial adaptivity [47, 54]. This section builds upon the factored 2D direct data

domain technique that reformulated earlier non-statistical (deterministic) attempts

at adaptive processing. Other researchers have developed a true two-dimensional

direct data technique [55], perhaps superior to the original concept. However, it too

has limitations and is not discussed here because it lacks relevance to this work’s

primary focus.

The original 2D direct data formulation worked on a factored premise, meaning

the weights for temporal adaptivity were calculated independently from the weights

for azimuth adaptivity. Furthermore, when calculating temporal adaptive weights,

the spatial samples serve to build the required system of equations. The converse

is true when calculating spatial adaptive weights. This premise stands for the 3D

extension, however, the framework becomes much more complicated due to the third

dimension.

The following discussion is designed to work within the space-time snapshot

framework defined in Chapter III. Because of this choice, the method requires two

new mathematical definitions similar to Matlab R© functional commands. The ap-

proach taken here keeps the overall structure similar to previous methods and, hope-

fully, allows the reader to concentrate on the approach rather than the mathematics.
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First, consider the construction of the azimuth datamatrixA used to construct

the N × 1 azimuth weight vector wa. To create this matrix, the following definition

is introduced.

Definition (reshape operator). Given the vector χ of dimension NMP × 1, let

reshape (χ, N,M, P ) define the operation taking N elements column wise from χ to

form an N ×M ×P multidimensional array. The number of elements in the output

array must equal the total number of elements in χ. This operation is equivalent to

Y = reshape (χ, N,M · P )

Yi,j = χi+jN , (6.1)

where i = 0, 1, . . . , N − 1 and j = 0, 1, . . . ,MP − 1. The small dot (·) indicates

a product operation, typically implied but included here to avoid confusion. The

reshape operation is equivalent in both name and function to the Matlab R© reshape

command.

Using the range cell under test data, construct azimuth data matrix A using

the elevation and temporal dimensions as independent samples. This operation is

accomplished through

A = reshape (χ, N,M · P ) , (6.2)

resulting in the N ×MP matrix.

! Notice the form of A is not the same as in the original 2D hybrid
approach. This form is designed to give the common form for the complex
outer product. See page 46 for clarification and comparison to the original
2D method.
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Similarly, elevation data matrix E is composed using the temporal and azimuth

dimensions as independent samples. The P ×NM matrix E is found from

E = [reshape (χ, N ·M,P )]T . (6.3)

Unfortunately, temporal data matrix generation is much more difficult for the

3D extension. Since there is no multidimensional mathematical framework available,

the notation used here garners concepts established by Matlab R©. Constructing the

temporal data matrix first requires changing the shape of the snapshot being tested

for target presence into a N ×M × P matrix,

Ξ = reshape (χ, N,M, P ) . (6.4)

The next step requires a multidimensional transpose definition.

Definition (permute operator). Let permute (X, z) represent the multidimen-

sional transpose of the three-dimensional array X, where the elements of z represent

the desired output dimension order, i.e., z =
[

z1 z2 z3

]

is a row vector such that

zi = {1, 2, 3}. Define the three-dimensional N ×M × P array X as

X0 =
[

x0,0 x1,0 · · · xN−1,0

]T

X1 =
[

x0,1 x1,1 · · · xN−1,1

]T

...

XP−1 =
[

x0,P−1 x1,P−1 · · · xN−1,P−1

]T

, (6.5)

where xTi,j is the M × 1 vector corresponding to the ith row, i = 0, 1, . . . , N − 1, and

the jth matrix (third dimension), j = 0, 1, . . . , P − 1. Given the desired dimension
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order vector of

z =
[

2 1 3
]

, (6.6)

the permutation of the N ×M × P matrix X is permute (X, z), or

X0 =
[

x0,0 x1,0 · · · xN−1,0

]

X1 =
[

x0,1 x1,1 · · · xN−1,1

]

...

XP−1 =
[

x0,P−1 x1,P−1 · · · xN−1,P−1

]

. (6.7)

Hence, the output of this operation is theM×N×P matrix where the original matrix

X dimensions have been reordered. As expected for a generalized transpose, the

operation for standard two-dimensional matrices collapses to the common transpose

operator. The operation is equivalent in both name and function to the Matlab R©

permute command.

Rearrange the space-time snapshot using the permute operator,

permute (Ξ, z) , (6.8)

and the same dimension order in z as used in the definition. The reshape operator

then transforms the samples into the desired M ×NP temporal data matrix T,

T = reshape (permute (Ξ, z) ,M,N · P ) . (6.9)

Again, the premise behind each interference matrix is identical - one dimension is

adapted across while the other two dimensions provide independent sampling.

Azimuth weights are calculated using the azimuth data matrix A of Eqn. (6.2).

Adjacent elements of A are co-phased, precluding signal cancellation and forming
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the azimuth interference matrix. The phase delay between returns from adjacent

azimuth elements is given by

za = ej2π
dx
λ

sinφ cos θ, (6.10)

where φ and θ correspond to the desired mainbeam azimuth and elevation angles,

respectively. Using this phase delay, the individual azimuth element returns are

co-phased using

Ãi,j = Ai,j − z∗aAi+1,j , (6.11)

where i = 0, 1, . . . , N − 2 and j = 0, 1, . . . ,MP − 1. This operation is simply

the difference between adjacent elements with an appropriate phase term to ensure

the desired signal is completely cancelled and only interference remains. Note, this

differencing operation results in a loss of one DOF in the azimuth adaptive weight

vector. Essentially, this DOF is used to ensure the desired signal component is not

corrupted.

The N − 1×MP matrix Ã can also be expressed using strict matrix notation

as

Ã = A1 − z∗aA2 (6.12)

with the matrix partitions A1 and A2 obtained from

A =





A1

αT



 =





αT

A2



 , (6.13)

where α is a scalar placeholder and α is a N × 1 vector placeholder representing the

samples in the original A matrix.

Temporal and elevation weights are calculated in the same manner as the

azimuth weights. The difference lies only in the sample-to-sample phase progression

and the steering vectors used. For example, the temporal weights are calculated
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using

zb = ej2πω̄. (6.14)

This term co-phases the samples using matrix partitions, exactly as before, i.e.,

T̃i,j = Ti,j − z∗bTi+1,j , (6.15)

where i = 0, 1, . . . ,M−2 and j = 0, 1, . . . , NP−1. The weight vectors are calculated
using either of the following two techniques with appropriate substitution for T̃ or

Ẽ and bM−1 or eP−1.

! To this point, the development mirrors the original 2D hybrid for-
mulation in concept. Note, the differencing operation is essentially a two
element beamforming operation where a null is placed on the desired signal
to avoid nulling it in subsequent processing. However, the act of placing this
null has consequences in that discrete interferers lying close to the desired
signal will not be cancelled. The differencing null effectively removes them
from the subsequent calculations. This consequence is a limitation of the
current hybrid approach and is inherent in either the constrained difference
maximization or maximum SINR adaptive weights that follow.

6.1.1.1 Constrained Difference Maximization. Following the original

2D hybrid technique, consider the scalar expressions

G =
∣

∣wH
a aN−1

∣

∣

2
, (6.16)

I =
∣

∣

∣

∣

∣

∣
wH
a Ã

∣

∣

∣

∣

∣

∣

2

, (6.17)

where aN−1 is the vector comprising the first (N − 1) elements of steering vector a

and ||·|| represents the Frobenius norm. The G term in Eqn. (6.16) represents the

power gain in the look direction due to weights wa, e.g., signal power. The I term

in Eqn. (6.17) represents residual interference power. The previous 2D direct data

domain technique obtains the adaptive weights maximizing the difference between
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the two terms, i.e.

max
‖wa‖

2=1

(

G− κ2I
)

= max
‖wa‖

2=1
wH
a

(

aN−1a
H
N−1 − κ2ÃÃH

)

wa. (6.18)

The constraint ||wa||2 = 1 guarantees a finite solution. The κ2 term serves as a

sidelobe control parameter. Using the Lagrange multiplier method, the weight vector

maximizing Eqn. (6.18) is the eigenvector corresponding to the largest eigenvalue of

the matrix

aN−1a
H
N−1 − κ2ÃÃH . (6.19)

This weight vector constitutes the azimuth adaptive weights and is length (N − 1),

representing a one DOF loss in the spatial domain. As in the original 2D approach,

this loss compares favorably with other non-statistical techniques where close to

one-half the DOF are lost [54].

! The previous statement can be misleading. The DOF loss due to this
approach is one in each dimension. Hence, the total DOF loss is

(P − 1) [(M − 1) +N ] +MN

for P 6= 1.

6.1.1.2 SINR Maximization. An alternate approach to the original

constrained maximization formulation involves maximizing the SINR. The technique

is identical to the 3D-MF development of Section 5.1.2. The SINR can be constructed

using the G and I terms previously defined,

SINR =
G

I
=

∣

∣wH
a aN−1

∣

∣

2

∣

∣

∣

∣

∣

∣
wH
a Ã

∣

∣

∣

∣

∣

∣

2 . (6.20)
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Next, expand the numerator and denominator into

SINR =
wH
a

(

ÃÃH
)
1
2
(

ÃÃH
)− 1

2
aN−1a

H
N−1

(

ÃÃH
)− 1

2
(

ÃÃH
)
1
2
wa

wH
a

(

ÃÃH

)
1
2
(

ÃÃH

)
1
2
wa

. (6.21)

Define the unit vector u as

u =

(

ÃÃH
)
1
2
wa

∣

∣

∣

∣

∣

∣

∣

∣

(

ÃÃH

)
1
2
wa

∣

∣

∣

∣

∣

∣

∣

∣

. (6.22)

SINR maximization is now easily seen by substituting u into Eqn. (6.21),

SINR =

∣

∣

∣

∣

uH
(

ÃÃH
)− 1

2
aN−1

∣

∣

∣

∣

2

. (6.23)

For maximum SINR, the unit vector lies parallel to
(

ÃÃH
)− 1

2
aN−1, hence

u ∝
(

ÃÃH
)− 1

2
aN−1. (6.24)

The azimuth weight vector wa ignoring scale factors is then

wa ∝
(

ÃÃH
)−1

aN−1. (6.25)

Similarly, the temporal (wb) and elevation (we) adaptive weight sets, after

making the appropriate substitutions in the above development, are given by

wb ∝
(

T̃T̃H
)−1

bM−1 (6.26)

we ∝
(

ẼẼH
)−1

eP−1. (6.27)
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6.1.1.3 Full Weight Vector. Whether using the constrained opti-

mization approach or the SINR maximization method, the full weight vector is

constructed in a manner identical to a space-time steering vector, e.g., using the

Kronecker product. The primary difference involves appending a zero to the end

of each weight vector, accommodating the single DOF loss as a result of the initial

differencing operation. Hence, the weight vector forming a beam to a single azimuth,

elevation, and Doppler location while placing nulls in the direction of discrete inter-

ferers is given by

w =





we

0



⊗





wb

0



⊗





wa

0



 . (6.28)

From this equation, the previous statement regarding the total DOF lost due to the

approach is clearer. One DOF is sacrificed in each dimension. Hence, the total DOF

loss is (P − 1) [(M − 1) +N ] +MN for P 6= 1.

6.1.2 Statistical Beamspace Adaptivity. The non-statistical (deterministic)

adaptive transform results in a complex output at a particular azimuth, Doppler, and

elevation location. Repeated iterations of the deterministic approach, where each is

steered to a different look direction, forms a LPC suitable for statistical beamspace

adaptivity. In this manner, the overall approach of the hybrid technique is identical

to JDL. The most significant difference involves replacing the conventional, non-

adaptive discrete Fourier transform with repeated applications of the deterministic

method. In this manner, the technique inherently suppresses discrete interferers.

Mathematically, this repeated operation of the deterministic approach can be

represented by a transformation to the predetermined LPC. Consider the matrix

operator W. The azimuth-Doppler-elevation data is given by χ̃ = WHχ. The

steering vector is transformed in the same manner. An example of W for a 3× 3× 3
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LPC is

W =
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, (6.29)

where wi,j,k corresponds to a weight vector with mainbeam at φi, ω̄j, and θk. For the

general architecture reflected by this equation, the weight vector w−1,t,1 has a main-

beam corresponding to an azimuth angle φ one bin below the LPC center azimuth,

normalized Doppler equaling the LPC center normalized Doppler (the mainbeam

look direction or “target” location), and elevation angle θ equal to one bin above the

LPC center elevation. Bin size is determined by design with limits consistent with

standard sampling concepts. Obviously, the 3× 3× 3 LPC results in 27 iterations of

the deterministic approach. In general, for a ηe × ηb × ηa size LPC, there are ηeηbηa

iterations necessary to populate the LPC, e.g., beamspace, for statistical adaptivity.

! The azimuth-Doppler-elevation data as given by χ̃ = WHχ is in
vector form, corresponding to the column vector framework established in
Chapter III. Hence, the ηeηbηa × 1 vector χ̃ is arranged such that the first
ηa elements contain azimuth samples corresponding to the first normalized
Doppler bin and first elevation bin. The second set of ηa elements corre-
spond to azimuth samples from the second normalized Doppler bin and first
elevation bin. The ηthb set of ηa elements are the azimuth samples corre-
sponding to the ηthb normalized Doppler bin and first elevation bin. Finally,
the ηb + 1 set of ηa elements are azimuth samples for the first normalized
Doppler bin and second elevation bin. The pattern continues in this man-
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ner. The data could be rearranged into a three-dimensional data cube using
reshape (χ̃, ηa, ηb, ηe).

The locally adaptive weight vector is then calculated in a manner identical

to 3D-JDL. Since the first stage consists of a deterministic technique, it no longer

makes sense to generate an expression with known covariance. This point becomes

clear when constructing the locally adaptive weight vector wLPC . First, consider the

data within the LPC,

χ̃ =WHχ, (6.30)

where the tilde (̃ ) denotes beamspace, e.g., the LPC. Now examine the second-order

statistics,

RLPC = E
{

χ̃χ̃H
}

= E
{

WHχχHW
}

. (6.31)

The weight vector is then calculated exactly as before,

wLPC = R−1
LPCW

Hv, (6.32)

where the inner product between the adaptive transformation W and v is the steer-

ing vector within the beamspace LPC. The reason a formulation in terms of known

covariance is no longer suitable is apparent when examining RLPC of Eqn. (6.31).

The transformation W is random, hence, the expected value operator does not dis-

tribute across this term. SinceW is realization dependent (as a result of this specific

approach), there is no way to determine RLPC other than by estimation. Therefore,

all results are reported using either Monte Carlo analysis or the RPSL/RASL mea-

sures of previous chapters. The weight vector is given by

wLPC = R̂−1
LPCW

Hv. (6.33)
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The LPC covariance estimate is given by the MLE

R̂LPC =
K
∑

i=1

χ̃iχ̃
H
i =

K
∑

i=1

WH
i χiχ

H
i Wi, (6.34)

where the number of secondary data vectors K is twice the LPR size, i.e., 2ηeηbηa.

This expression highlights the range/sample dependence of the deterministic first

stage.

6.1.3 3D Hybrid Results. Results are characterized using simulation pa-

rameters consistent with previous chapters. Homogeneous data is generated using

the 3D model of Chapter III and a target added within the designated range cell

corresponding to the radar look direction. Heterogeneous data is simulated using the

same data and target; the radar mainbeam is formed in a direction differing from the

true target location, essentially turning the “target” into a discrete interferer. This

case corresponds to a “no target present” scenario. In this manner, target detection

capability is evaluated using the homogeneous data. Interferer rejection capability

is evaluated using the heterogeneous data.

The true target (discrete interferer for the heterogeneous case) is generated

at 25◦ azimuth, 10◦ elevation, 0.25 normalized Doppler, and range cell 80. For the

homogeneous data test, the radar look direction matches the true target and allows

detection capability characterization. The radar look direction is moved to 65◦ in

azimuth, a difference of 40◦ from the interferer location for the heterogeneous test.

Ideally, no response should occur in this case since the radar is not “looking” at the

interferer.

Figure 6.2 is a plot of the normalized output test statistic versus range cell for

the homogeneous data case. As mentioned in the previous chapter, 3D-JDL offers

excellent detection capability as evidenced by the strong response at range cell 80.

The RPSL is nearly 43.5 dB, indicating superb detection probability at this target
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amplitude and SNR. The 3D hybrid extension also offers good response at the range

cell under test, although some penalty is incurred as a result of the deterministic

processing of the first stage. The indicated RPSL for the 3D hybrid extension is

appropriately 30 dB, 13.5 dB poorer than 3D-JDL.

The real benefit of hybrid methods is evident in Fig. 6.3, where the normalized

output test statistic is plotted versus range for the heterogeneous test case. In this

case, the methods should not have any response at range cell 80, the interferer

location. The 3D-JDL method does suppress the interferer to an extent as evidenced

by an 18 dB RPSL; greatly reduced from the 43.5 dB when the radar was looking

directly at the target/interferer. However, the response is significant enough to yield

a high false alarm rate. Conversely, the 3D hybrid extension results in an RPSL

of -5 dB, well below surrounding ground clutter returns and indicating superb false

alarm characteristics when operating in heterogeneous data.

! Good performance in homogeneous data results in positive RPSL
values, the standard up to this point in the research. However, good per-
formance in heterogeneous data results in negative RPSL values. Negative
RPSL indicates there is minimal response to the discrete interferer and is the
desired condition. The results in heterogeneous data measure the ability to
suppress discrete interference and do not indicate target detection capability.

At this point, results for the 3D extension to the original 2D hybrid seem

excellent. However, some important limitations have been buried as a result of the

scenario. The differencing operation used to co-phase the returns effectively avoids

desired signal cancellation. However, the approach does incur a rather significant

penalty. The differencing operation equates to a two-element beamforming opera-

tion, effectively creating a virtual null1 in the direction of the desired signal. Unfor-

tunately, a two-element beamformer produces a very wide null that not only removes

1The term virtual is used here since the nulling operation is performed in data processing rather
than through physical beam steering.
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Figure 6.2: Results for the 3D hybrid in homogeneous data.
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Figure 6.3: Results for the 3D hybrid in heterogeneous data.
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Figure 6.4: Results for the 3D hybrid in heterogeneous data.
Look direction is now at 45◦ azimuth instead of 65◦.

the desired signal from the interference estimate but also removes a significant por-

tion of the interference. Therefore, as the look direction converges on interferer

location, the method becomes incapable of suppressing the interferer(s).

Figure 6.4 illustrates this concept. The 3D hybrid method is applied to the

same data set as used in the previous two figures. The only exception is that the

radar look direction is now at 45◦ azimuth. Since the target is located at 25◦ azimuth

(look direction is matched to the interferer in elevation and normalized Doppler,

but not azimuth), the scenario remains heterogeneous. In this case, the interferer

is 20◦ away from the look direction and there should be no response indicating

target presence at range cell 80. Unfortunately, the initial co-phasing operation

resulted in significant suppression of the interferer and effectively removed it from

the interference estimation used in the deterministic processing. As indicated in

Fig. 6.4, the 3D original hybrid extension produces a 6.56 dB RPSL response at the

discrete interferer range cell, falsely indicating target presence.
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6.2 Inverse 3D Hybrid Concept

One drawback of the original hybrid formulation involves a fundamental de-

sign issue. Deterministic techniques offer inferior correlated interference suppression,

when compared to statistical interference suppression methods. Therefore, discrete

interferer suppression would likely be improved if correlated interference were sup-

pressed first. This order is the exact opposite of the original 2D hybrid technique

and the proposed 3D extension of Section 6.1.

Two conflicting observations dominate the fundamental design issue. First, the

deterministic processing stage goal is discrete interferer removal. Hence, this goal

could be achieved by suppressing statistical interference first. Second, the statisti-

cal processing stage goal is correlated interference removal. Achieving this goal is

impeded if discrete interferers are present in secondary data. Based on the second

observation, it seemed reasonable that discrete interferers should be suppressed first.

The realization resulted in the birth of the original 2D hybrid formulation.

Discrete interferer effects on statistical processing methods can be alleviated

using a Non-Homogeneity Detector (NHD) [7] to remove offending secondary data

samples from interference estimation. Unfortunately, no method has been devel-

oped to alleviate correlated interference effects on deterministic processing methods.

Deterministic methods attempt to suppress all interference sources and lack the abil-

ity to discern correlated interference (subject to later suppression by the statistical

approach) from discrete interferers. For this reason, a logical hierarchy is to:

1. Detect heterogeneous secondary data samples using an NHD.

2. Excise heterogeneous secondary data samples from interference estimates.

3. Apply a statistical method for correlated interference suppression.

4. Finally, apply a deterministic method for discrete interferer suppression.

Unfortunately, actual technique development is never quite as simple as con-

cept visualization. The most significant limitation is implicit in the above processing
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hierarchy. The output of the statistical method, or any method, is a complex num-

ber representing the return for a single azimuth, Doppler, and elevation position.

Although statistical methods operating in beamspace exist, deterministic methods

typically operate in the space-time domain.

One straightforward solution is to use original 2D hybrid concepts. Simply

apply a statistical method repetitively, building the entire azimuth-Doppler-elevation

space. In this manner, the technique serves as an adaptive transform analogous to

the non-adaptive Fourier transform. A three-dimensional inverse discrete Fourier

transform can be used to transform back to space-time data, allowing deterministic

interference suppression. Figure 6.5 is a block diagram of this concept.

Although any statistical technique can be used, 3D-JDL is indicated since

it offers advantages in scalability, computation time, and robustness. The size of

the azimuth-Doppler-elevation space dictates how many times 3D-JDL is run given

each instance of 3D-JDL results in a single azimuth-Doppler-elevation bin. If the

desired space is N×M×P , then NMP 3D-JDL iterations are required. This choice

results in identical dimensionality between the final and original space-time data

sets. Scaling the azimuth-Doppler-elevation space down results in fewer available
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DOF for deterministic processing. Increasing azimuth-Doppler-elevation space size is

equivalent to zero padding the original data set, giving higher beamspace resolution,

and resulting in more available DOF for deterministic processing at the expense of

increased computational load.

A new mathematical framework is not necessary for this development. Follow-

ing the block diagram in Fig. 6.5, the first step fills the azimuth-Doppler-elevation

space and uses an repetitive 3D-JDL operation. The mathematical framework for

3D-JDL is provided in Section 5.3.

The next step is an inverse three-dimensional discrete Fourier transform. The

multidimensional discrete Fourier transform is developed and presented in [23]. The

block diagram uses the notation 3D F−1 to denote this transform. This operation

results in space-time data, identical in form to the original space-time data set. The

only difference between the two is the suppression of correlated interference.

The final operation is implementation of a deterministic approach for suppress-

ing discrete interference. The method of Section 6.1 is used. A standard space-time

steering vector is used in this final stage, with no provisions implemented for possible

warping in the two previous stages.

6.2.1 Design Parameters. The inverse hybrid concept involves several

design considerations, each involving a tradeoff between performance and computa-

tional load. Perhaps the most critical design criteria is the size of the azimuth-Dopp-

ler-elevation space. For this work, dimensionality was set to N ×M × P . However,
distinct advantages and disadvantages arise by making this space either larger or

smaller.

Using smaller dimensionality results in tremendous computational load savings

since fewer 3D-JDL iterations are required. The penalty is beamspace resolution loss

and fewer DOF available for deterministic processing in the final adaptivity stage.

The resolution loss could be alleviated to a certain extent through zero padding the
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inverse discrete Fourier transform, although the impact of zero padding on the final

adaptivity stage has not been explored.

Conversely, using larger dimensionality makes significantly more DOF available

for the final stage. However, populating the beamspace becomes computationally

prohibitive for real-time operation. Increased dimensionality results in exponential

increases in computational load.

Perhaps the most important consideration involves actual locations of the azi-

muth-Doppler-elevation bins used to populate the beamspace. Intuitively, the de-

sired signal location (the location under test) should become one of the bins. How-

ever, this choice places an additional constraint on beamspace dimensionality. If the

desired signal location does not lie on a standard sampling interval of the N×M×P
space, the space must be increased until one of the points coincides with the desired

signal location. This stipulation occurs because the discrete Fourier transform is

based on uniform sampling. Unfortunately, this can lead to larger dimensionality

and larger computational load.

Rather than attempt to balance all these tradeoffs, this work offers a proof-

of-concept technique using a single azimuth-Doppler-elevation dimensionality equal

to the original data set sizes, i.e, N ×M × P . As shown in the following results,

performance with this choice is acceptable.

6.2.2 Inverse 3D Hybrid Results. Results are characterized using the 3D

data simulation parameters from previous chapters, allowing side-by-side compar-

ison of the two proposed hybrid methods. A point of importance for this inverse

hybrid technique is the choice of beamspace bin locations. As already mentioned,

beamspace dimensionality is chosen as N × M × P , where N = 8, M = 8, and

P = 8. Unfortunately, the target does not fall in directly into one of the bins.

Consider the azimuth dimension, for example. The uniform sampling requirements

forces the azimuth bins to occur at −90◦, −67.5◦, −45◦, −22.5◦, 0◦, 22.5◦, 45◦, and
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67.5◦ (90◦ aliases to -90). As before, the target is placed at φt = 25◦ which results in

a slight mismatch with the uniform sampling locations. Now consider the elevation

dimension. Since the number of elevation channels is also eight, the elevation bins

occur at the same intervals as the azimuth bins. Consistent with previous chapters,

the target is located at θt = 10◦ which results in a minimum mismatch of 10◦ with

the uniform sampling locations. The normalized Doppler uniform sampling results

in a bin exactly at the target normalized Doppler of 0.25, although this fact is of

little consequence since there is a mismatch in the other two dimensions. The ef-

fects of mismatch between target and beamspace uniform sampling grids are not

addressed here. Rather, the intent is to highlight the proposed technique’s design

considerations and illustrate nominal capabilities.

Figure 6.6 is a plot of the normalized output test statistic versus range cell

for homogeneous data. The 3D-JDL performance (used here for reference) was in-

troduced in Figs. 6.2 through 6.4. Fig. 6.6 illustrates the 3D inverse hybrid concept

offers acceptable homogeneous data performance with 18.7 dB RPSL, although not

quite as good as the 3D original hybrid extension (30 dB RPSL).

As before, the real benefit of hybrid methods is revealed by analyzing Fig. 6.7.

Again, the methods should not offer any significant response at range cell 80, the

interferer location. Previously, the 3D hybrid extension resulted in an RPSL of

-5 dB, well below surrounding ground clutter returns. The proposed 3D inverse

hybrid method offers comparable results with -4.8 dB RPSL. Clearly, both 3D hybrid

approaches offer superb false alarm characteristics when operating in heterogeneous

data.

Once again, results of the proposed 3D inverse hybrid technique’s appear ex-

cellent. However, some important limitations have been buried as a result of the sce-

nario. Using the same deterministic adaptivity approach has introduced the same

performance penalty resulting from the differencing operation used to co-phase the

returns and avoid signal cancellation. As discussed in Section 6.1, the differencing
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Figure 6.6: Results for the 3D inverse hybrid concept in ho-
mogeneous data.
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Figure 6.7: Results for the 3D inverse hybrid concept in het-
erogeneous data.
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Figure 6.8: Results for the 3D inverse hybrid concept in het-
erogeneous data. Look direction is now at 45◦ azimuth instead
of 65◦.

operation equates to a two-element beamforming operation which effectively creates

a virtual null in the desired signal direction. Unfortunately, a two-element beam-

former produces a very wide null that not only removes the desired signal during

interference estimation, but also removes a significant portion of the interference.

Therefore, as the look direction converges on the interferer location, the 3D inverse

hybrid method becomes incapable of suppressing the interferer(s).

Figure 6.8 reinforces this concept and shows the inverse 3D hybrid method

applied to the same data set used for the previous two figures. The only exception

is that the look direction is now at 45◦ azimuth. Since the target is located at 25◦

azimuth (look direction matched to target in elevation and normalized Doppler, but

not azimuth), the scenario remains heterogeneous. Given the interferer is now 20◦

away from the look direction, there should be no response indicating target pres-

ence at range cell 80. Unfortunately, the initial co-phasing operation resulted in
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significant interferer suppression and effectively removes it prior to interference esti-

mation within the deterministic processing stage. The proposed 3D inverse hybrid

method only produces an 8.77 dB RPSL (3D original hybrid extension produced a

6.56 dB RPSL) response at the discrete interferer range cell, falsely indicating target

presence.

6.3 Known Interferer Location

The primary goal of hybrid methods is discrete interferer suppression. The

previous 3D methods have shown varying degrees of success in achieving this goal.

The 3D extension of the original hybrid offered acceptable performance, as long

as the interferer location was sufficiently separated from the radar look direction.

This condition alleviates inadvertent nulling of the interferer as a result of the co-

phasing operation during interference estimation. Unfortunately, the inverse 3D

hybrid formulation suffered a similar drawback.

In light of the goal, a proof-of-concept approach is introduced to shed some

light on method viability. In particular, the case is considered where interferer lo-

cation (azimuth, elevation, Doppler, and range) is perfectly known a priori. This

evaluation provides performance characteristics that could be considered optimum.

Furthermore, the evaluation serves as a foundation for a new 3D technique exhibit-

ing excellent detection and interferer rejection characteristics. The proposed method

cannot be characterized as a hybrid since it does not meld deterministic and statisti-

cal methods into a single framework. However, the proposed method does satisfy the

goal of hybrid techniques. As such, its development is included within this chapter

for appropriate comparison to the other techniques.

Given known interferer location, constructing a filter to suppress the discrete

interferer is relatively simple. For example, consider elevation (ei), azimuth (ai),

and Doppler (bi) steering vectors describing the known interferer’s location. A filter,
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based loosely on Wiener filtering concepts, can be constructed from

C = (ei ⊗ bi ⊗ ai) (ei ⊗ bi ⊗ ai)H (6.35)

W =
(

C+ σ2IMNP

)−1
T, (6.36)

where C is an artificial covariance matrix analogous to the one used in Chapter IV,

σ2 corresponds to the noise power and T is a set of space-time steering vectors

corresponding to the LPC. The matrix T is analogous to the LPC adaptive trans-

formation previously described in Eqn. (6.29) where the individual components are

replaced by steering vectors.

Using the transformation of Eqn. (5.33) to get to the azimuth-Doppler-elev-

ation domain results in an LPC identical to the one used in 3D-JDL. Within this

LPC, statistical adaptivity is implemented in a manner identical to 3D-JDL. There-

fore, performance within homogeneous data should approach or equal 3D-JDL, a

method shown to offer excellent detection probability in homogeneous data. How-

ever, the proposed technique should also result in excellent rejection of discrete

interferers since a null is specifically formed in their direction.

6.3.1 “Optimum” Results. This section offers an evaluation of the proposed

technique using known interferer location. The scenario is identical to the previous

sections, allowing side-by-side comparison of different approaches.

Figure 6.9 is a plot for the proposed method using known interferer location

and homogeneous data. As expected, performance mirrors 3D-JDL and indicates

excellent detection probability with an RPSL of 43.52 dB. However, performance

within heterogeneous data is of primary interest. Fig. 6.10 illustrates heterogeneous

data results that are comparable with Figs. 6.3 and 6.7. Although the previous

methods offered acceptable performance with this heterogeneous scenario, the pro-

posed known interferer location method clearly offers improved interferer rejection

with -14.08 dB RPSL at the interferer location. Previously, the 3D original hy-
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Figure 6.9: Results for proposed 3D technique assuming
known interferer location, homogeneous data. Results are iden-
tical for the two methods.
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Figure 6.10: Results for proposed 3D technique assuming
known interferer location, heterogeneous data.
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brid extension illustrated -4.56 dB RPSL while the inverse hybrid method exhibited

-4.81 dB.

In previous 2D and 3D hybrid approaches, the primary limitation was the

beamforming null placed in the look direction used in the differencing operation. This

null was necessary to remove desired signal responses from the interference estimate.

As shown in Figs. 6.4 and 6.8, both techniques were unable to suppress interferers

as the look direction approached the interferer location. This result is expected to

a certain extent since an interferer present at the look direction is, by definition, a

target. However, the previous figures illustrated significant output response when

the look direction was 20◦ removed in azimuth from the interferer. Obviously, any

output response should be considered a false alarm. Ideally, any difference between

look direction and target location should result in no output response. However, real-

world antenna sidelobe levels preclude performance approaching this ideal limit.

! A rather obscure but important point is that performance would not

improve with an increase in the number of elements. The co-phasing opera-
tion involves differencing adjacent elements, essentially a two-element beam-
former. The operation remains the same regardless of the total number of
elements or pulses used.

Figure 6.11 contains a plot of the proposed method’s output response with

the interferer removed 20◦ (in azimuth) from the look direction. The RPSL at the

interferer location is measured at -16.15 dB. Clearly, the method is unaffected by the

discrete interferer being within close proximity to the radar look direction (“close”

as measured by the degradation of the previous hybrid techniques). Results are

drastically improved over both the 3D original hybrid extension and the inverse

hybrid method.

The final figure solidifies the claims made for this technique. The previous

results for each proposed technique (3D extension to the original 2D hybrid, the 3D

inverse hybrid concept, and the known interferer location method of this section)

illustrated inherent weaknesses in the first two proposed methods. As such, a single
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Figure 6.11: Results for proposed 3D technique assuming
known interferer location, heterogeneous data. Look direction
is now at 45◦ azimuth instead of 65◦.
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Figure 6.12: Results for proposed 3D technique assuming
known interferer location, heterogeneous data. Look direction
is now at 45◦ azimuth instead of 65◦ and curves are an average
of 500 realizations.
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realization offered sufficient evidence of these weaknesses. However, the claims made

for the known interferer location method require more support. Figure 6.12 offers

this support by presenting results averaged over 500 realizations. The scenario is

identical to that of Figs. 6.11, 6.8, and 6.4 with the look direction 20◦ away from

the discrete interferer in azimuth. Clearly, the curves illustrate the proposed known

interferer location approach completely mitigates the discrete interferer effects.

Examination of the RPSL metric averaged over the 500 realizations indicates

−9.71 dB with a standard deviation of 5.58 dB for the proposed known interferer

location method. For comparison, the 3D-JDL approach offered an average RPSL

of 32.56 dB with a standard deviation of 1.93 dB.

! The average RPSL metric does not equate to the RPSL of the average

curves in Fig. 6.12. As defined in this work, the RPSL is a measure of the
response in the target/interferer location relative to the next highest peak.
Hence, the “next highest peak” is not the same from realization to realization.
Therefore, average RPSL is more indicative of actual performance.

6.4 Summary

The 3D research progression of Fig. 1.2 is now completed. This chapter filled

the final square by extending the current state-of-the-art in 2D hybrid techniques

into three dimensions and also offered several new variants.

The 3D original hybrid extension exhibited distinct performance advantages in

heterogeneous clutter. The formulation mirrored 2D results with a modest penalty

incurred when operating in homogeneous data, as compared to 3D-JDL. However, a

design characteristic of the method precludes acceptable performance when discrete

interferers encroach upon the radar look direction. The wide null generated in the

two-element co-phasing operation, as part of the deterministic adaptivity stage, ef-

fectively suppresses “close” interferers in the interference estimate. This co-phasing

operation is designed to eliminate inadvertent target signal cancellation. The effec-
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tive removal/suppression of interferers during interference estimation is simply an

undesired byproduct.

The second proposed hybrid technique is the inverse hybrid. This method

attempts to alleviate a perceived drawback in the original hybrid formulation. As

discussed, deterministic techniques offer inferior correlated interference suppression

when compared to statistical interference suppression methods. Therefore, discrete

interferer suppression would likely be improved if the correlated interference were

suppressed first. This order is the exact opposite of how the original 2D hybrid tech-

nique, and the 3D extension thereof, is constructed. The inverse 3D hybrid method

first applies repetitive statistical adaptivity, thereby populating the beamspace. At

this point, equivalent space-time data is recovered using in inverse three-dimensional

discrete Fourier transform. Deterministic techniques are then used to suppress dis-

crete interference sources.

Inverse hybrid results indicate performance comparable to the 3D original hy-

brid extension. Since the same deterministic techniques were used, the same perfor-

mance penalty is incurred as a byproduct of the co-phasing operation. Hence, the

perceived gains due to reversing the adaptivity order are not fully realized.

A proposed solution involves departing from the current hybrid mindset and

returning to the fundamental goal of these techniques. Each method is designed to

1) offer maximum detection probability when operating within heterogeneous data

environments while 2) also retaining acceptable detection probability within homoge-

neous environments. As Section 6.3 illustrated, the goal is realizable based on known

interferer location. Given known location, there is no need for a technique melding

deterministic and statistical techniques. Hence, the proposed method is not a hybrid

in a strict sense. The known interferer location method is presented in this chapter

since it meets the goal of hybrid techniques. Results presented within this section

showed excellent performance within both heterogeneous and homogeneous environ-
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ments. In particular, no performance degradation occurred within homogeneous data

sets.
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VII. Conclusions

The primary objective of this research effort involved the advancement of adap-

tive interference suppression techniques for airborne radar. The problem ad-

dressed is one of detecting targets within severe interference environments charac-

terized by high levels of ground clutter, noise jammer infiltration, and other strong

sources not of interest (termed discrete interferers). Aircraft motion further com-

plicates the detection problem due to induced velocity and dynamic ground clutter

returns, causing them to occupy a wide range of Doppler frequencies.

The work began with an examination of the current state-of-the-art in 2D tech-

niques. Duplicated here in Fig. 7.1, Fig. 1.2 contains a block diagram representing

the 2D research progression. Each facet of more than 30 years of research in 2D

STAP is represented. This research represents a parallel to the 2D development

which provided the focus for this work.

Each major research area in 2D STAP has been duplicated within a 3D frame-

work. The overall 3D research progression is encapsulated by the righthand side of

Fig. 7.1, where each major research area is detailed in a previous chapter. The 3D

framework incorporates radar returns on an azimuth channel, pulse, and elevation

channel basis. As shown previously and summarized below, significant performance

gains are realized as a direct result of incorporating elevation adaptivity. Figure 7.2

graphically illustrates the links between 3D research contributions and corresponding

publications resulting from each.

7.1 3D Data Model

The first step in paralleling the 2D research involved construction of an appro-

priate 3D data model. Based on previous 2D work, the proposed 3D model presented

in Chapter III offers several extensions.
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First, returns from elevation channels have been incorporated into the vector

framework. Extension to a 2D planar array forced the use of array element patterns

as a function of azimuth and elevation, now explicitly included in the model. Ele-

vation functionality within the individual element patterns represents an important

factor when attempting to compare with actual measured data.

Each facet of the airborne radar problem is addressed in detail. A coordinate

system common to airborne radar platforms serves to describe returns from the entire

sphere surrounding the radar. Using this coordinate system, the transmit signal is

examined within a mathematical framework suitable for subsequent analysis. This

mathematical foundation allows characterization of the return signal on a per pulse,

per element basis. Working at the per pulse, per element level, a vectorized format

was developed allowing statistical characterization of clutter, jamming, and thermal

noise components present in actual airborne radar scenarios.
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A fairly important aspect of the 3D data model involves range ambiguous

returns. Although the original 2D model has range ambiguous return capability, all

reported results based on the model, including the original work [65], do not account

for nor include range ambiguous clutter effects. This work not only provides for

these returns within the 3D model, but also presents results for cases including range

ambiguous clutter. Range ambiguous clutter has a significant impact for medium

and high-PRF radars as shown throughout this work. Elevation adaptivity serves to

alleviate the associated performance loss.

From the 3D data model framework, expressions for the space-time steering

vector, covariance matrix, and related processing elements were developed. These

individual components serve as the building blocks for the subsequent 3D adaptive

methods. The 3D model is purposely constructed in a manner providing generality.

An in-depth discussion of the original 2D model was not provided since the 3D model

effectively collapses to the 2D case.

7.2 3D Factored Approaches

The first step in developing adaptive methods for the 3D case, and the second

step of 3D research identified in Fig. 7.1, involved factored approaches. A factored

approach implements adaptivity in successive stages, where each stage addresses a

single dimension, e.g., azimuth, normalized Doppler, or elevation.

Intuitively, beginning with factored methods made sense because of their inher-

ent simplistic design. Chapter IV developed a series of 3D factored methods that not

only illustrate the inherent advantages of 3D processing, but also served to reinforce

the validity of the 3D data model provided in Chapter III.

The first factored approach involved a simplistic implementation of 3D Fac-

tored Time-Space (3D-FTS). Ground clutter is suppressed by first implementing a

simple two-element beamformer. This beamforming is adaptive on a range cell ba-
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sis only with clutter null placement based on the calculated ground clutter location

according to aircraft attitude and a spherical Earth model.

The simplistic 3D-FTS approach served two primary purposes: model and

concept validation. Constraining the technique to two elevation channels allowed

validation with collected Multi-Channel Airborne Radar Measurement (MCARM)

data. The MCARM program involved collection of actual airborne radar measure-

ments for the purpose of adaptive radar processing research. Introduction of this

rudimentary 3D-FTS approach illustrated the drastic performance gains incurred

as a result of incorporating elevation adaptivity. In particular, greater than 15 dB

improvement in Relative Peak Sidelobe Level (RPSL) (comparable to output Signal-

to-Interference plus Noise Ratio (SINR)), relative to 2D-FTS, was demonstrated

using the MCARM data. Furthermore, only two vertical data channels are available

from the MCARM radar array. Subsequent analysis using an increased number of

vertical channels showed better results, in particular approximately 30 dB reduction

in SINR was shown for constant detection probability (Pd) (compared to 2D-FTS).

The 3D-FTS performance comparisons using simulated data produced results iden-

tical to the MCARM tests and effectively validated the 3D data model.

The next research step involved necessary extensions to make 3D-FTS more

robust. Several limitations of the simplistic approach were addressed. The two ele-

vation channel constraint was removed (originally enforced to allow comparison with

available MCARM data). Also, several approaches to ground clutter null placement

were examined and evaluated. In particular, a technique capable of suppressing range

ambiguous clutter returns was introduced. As shown in Chapter IV, 3D performance

greatly improved over equivalent 2D counterparts. For the array and coherent pro-

cessing interval sizes considered, RPSL performance improvements on the order of

23 dB were demonstrated.

The excellent 3D-FTS performance results prompted array thinning analysis.

The introduction of elevation adaptivity in conjunction with the factored Doppler
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and azimuth approaches, 3D-FTS in it’s entirety, suggested there might be minimal

performance degradation as the array is thinned. The array thinning analysis served

two primary purposes. First, array element failure can result in inadvertent thinning.

The performance degradation associated with element failure is an important topic in

radar design. Second, reducing the total number of elements reduces the total cost of

fabrication. Therefore, antenna cost can be reduced with no significant performance

penalty. As the array thinning analysis in Section 4.3 shows, significant reductions in

the total number of elements can be realized with minimal performance degradation.

Approximately 70% of the elements were selectively removed and SINR performance

only degraded by 3 dB. This result is a direct consequence of the 3D extension.

Placing nulls in azimuth, Doppler, and elevation enables the radar to more effectively

separate targets from interference using a reduced number of Degrees Of Freedom

(DOF).

The final factored approach considered was Elev-JDL. The robust performance

of 2D-JDL prompted an exploration into a factored 3D implementation. This fac-

tored approach served as a precursor to the joint approaches subsequently presented

in Chapter V. As expected, detection probability and output SINR for the Elev-

JDL technique edged out 3D-FTS performance due to the robust nature of the joint

domain localized processing stage.

7.3 3D Joint Approaches

By definition, factored approaches are suboptimal. Suboptimal performance

stems directly from the sequential (versus combined) nature of the factored approach;

effective null placement is achieved for particular locations in azimuth, Doppler, or el-

evation, but not for particular locations in azimuth, Doppler, and elevation. Achiev-

ing/approaching optimal performance requires extension to joint domain techniques,

i.e., techniques operating jointly within the azimuth-Doppler-elevation space versus

individual spaces.
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The previous factored approaches greatly improve clutter suppression perfor-

mance. Conversely, the next research topic focused on joint domain techniques.

First, the 3D Matched Filter (3D-MF) for known interference is derived using three

different approaches. As in the 2D case, the three approaches generate identical

filters within a scale factor, showing equivalence.

Unfortunately, the interference encountered in actual airborne radar scenarios

is unknown a priori. This fact forces construction of adaptive methods for esti-

mated covariance. The most obvious approach is the 3D Adaptive Matched Filter

(3D-AMF), where an estimated covariance matrix is substituted into the matched

filter. This approach generated well established practical limitations consistent with

the 2D case, including issues involving computational load, secondary data support

sizes, and stationarity. As expected, the extension to 3D further compounds these

limitations.

The desire to generate a practical 3D adaptive interference suppression method

forced further research. The subject of this research, and subsequently the main goal

of Chapter V, involved extension of more robust 2D STAP techniques, i.e., the Joint

Domain Localized (2D-JDL) method [64]. This method is a beamspace approach

whereby adaptivity is implemented in the azimuth-Doppler domain. Of particular

interest is the analytic simplicity of the ideal target model when transformed to the

azimuth-Doppler domain. Given ideal conditions, a target is projected into a single

azimuth-Doppler bin, inherently allowing adaptivity within a small localized region.

Using a small localized adaptivity region offers several benefits. First, fewer DOF are

needed, directly resulting in tremendous computational efficiency (when compared to

methods such as the 2D-AMF and 3D-AMF). Second, required sample support can

be drastically reduced in response to fewer DOF. This reduction in sample support

makes 2D-JDL performance less susceptible to adverse heterogeneous clutter effects.

For these reasons, a three-dimensional variant of 2D-JDL appeared enticing as the

next research step.
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Chapter V implements a true 3D Joint Domain Localized (3D-JDL) adaptive

processor within the azimuth-Doppler-elevation space. The proposed concepts are

validated using results based on simulated range ambiguous airborne radar data. The

3D-JDL method demonstrated target detection improvement on the order of 10 dB

and 57 dB when compared to standard 2D-JDL and 2D-FTS processing, respectively,

for an 8× 8 non-uniform rectangular array.

7.4 3D Hybrid Approaches

The final 3D Hybrid work identified in Fig. 7.1 extends the current state-of-the-

art in 2D hybrid techniques and offers several new variants. The initial 3D hybrid

extension exhibited distinct performance advantages in heterogeneous clutter. The

formulation mirrored 2D results with a modest penalty incurred when operating in

homogeneous data, as compared to 3D-JDL. However, design characteristics of the

initial 3D hybrid extension precluded acceptable performance when discrete interfer-

ers encroach the radar look direction. Specifically, the relatively wide null generated

in the two-element co-phasing operation, as part of the deterministic adaptivity

stage, effectively suppresses “close” interferers in the interference estimate. This

co-phasing operation is designed to eliminate inadvertent target signal cancellation

and should not remove/suppress interferers within the interference estimate. This

undesired byproduct precludes incorporation into the adaptive nulling pattern by

not allowing accurate interference estimation.

A proposed alternate technique is the inverse 3D hybrid. This method at-

tempts to alleviate a different perceived drawback in the original hybrid formulation.

Namely, deterministic techniques offer inferior correlated interference suppression

when compared to statistical interference suppression methods. Therefore, discrete

interferer suppression would likely be improved if the correlated interference were

suppressed first. In this case, the desired suppression order is exactly opposite of

the original 2D hybrid and the initial 3D extension. The inverse hybrid method first
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applies repetitive statistical adaptivity, thereby populating the beamspace. At this

point, equivalent space-time data is recovered using an inverse three-dimensional

discrete Fourier transform. Deterministic techniques are then applied to suppress

discrete interference sources.

Inverse hybrid results indicate achievable performance is comparable to the

initial 3D extension of the original 2D hybrid. Since the same deterministic tech-

niques were used, the same performance penalty was incurred as a byproduct of the

co-phasing operation. Hence, the perceived gains due to reversing the adaptivity

order were not fully realized.

A potential solution would involve breaking away from the current hybrid

mindset and returning to the fundamental goal of these techniques. Each method

is designed to 1) offer maximum detection probability when operating within het-

erogeneous data environments while 2) retaining acceptable detection probability

within homogeneous environments. As Section 6.3 illustrates, the goal is realizable

based on known interferer location. Given known interference location, there is no

need to meld deterministic and statistical techniques and the proposed method is

not a hybrid in the strict sense - the method is introduced for completeness since it

meets the goal of hybrid techniques. Results presented show excellent performance

within both heterogeneous and homogeneous environments. In heterogeneous data

environments, the proposed method was impervious to the discrete interferer with

an RPSL of -16.15 dB (positive response indicates false target indication) compared

to 8.77 dB for the proposed inverse 3D hybrid and 6.56 dB for the 3D extension to

the original 2D hybrid. Furthermore, no performance degradation occurred within

homogeneous data sets; the proposed inverse 3D hybrid and 3D extension suffered

25 dB and 13.5 dB degradation (compared to 3D-JDL), respectively. Identifying

accurate interferer location remains a topic for future research.
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7.5 Future Work

The comparison drawn between 2D and 3D approaches, as presented in this

document, constrains the number of azimuth channels N and the number of pulses

M . This constraint puts the two methods on an equal footing in terms of azimuth

and Doppler resolution. The 3D approach gains the added elevation processing ad-

vantage. Reported results give an improvement due to the extension to 3D, bounded

to be no less than 10 log10 P (the ideal white noise limited case). A portion of any

improvement could be attributed to the increase in total DOF, depending on the in-

terference scenario. In light of this argument, future work could constrain the total

DOF and offer a new analysis.
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Appendix A. Kronecker Product

The Kronecker Product is simple in concept. Given two matrices A and B, the

Kronecker Product is defined in the following manner [28],

A⊗B ≡

















A11B A12B A13B · · · A1MB

A21B A22B A23B · · · A2MB
...

...
...

...
...

AN1B AN2B AN3B · · · ANMB

















. (A.1)

Therefore, given an N ×M matrix A and P ×Q matrix B results in an NP ×MQ

matrix. The following table of identities holds for Kronecker products.

Table A.1: Properties of Kronecker Products

1. (A+B)⊗C = A⊗C+B⊗C
2. (A⊗B)⊗C = A⊗ (B⊗C)

3. α(A⊗B) = (αA)⊗B) = A⊗ (αB)

4. (A⊗B)H = AH ⊗BH

5. (A⊗B)−1 = A−1 ⊗B−1

6. (A⊗B)(C⊗D) = (AC)⊗ (B⊗D)

7. (A⊗B) = (A⊗ I)(I⊗B)

Corollary A.1. The outer product of three Kronecker vector terms is given by

(a⊗ b⊗ c) (a⊗ b⊗ c)H = aaH ⊗ bbHccH . (A.2)

Proof. The proof of the above corollary is simple using property 6 of the Kronecker

product. Let y = b ⊗ c. Performing this substitution and using property 4 results

in

(a⊗ y)
(

aH ⊗ yH
)

, (A.3)
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and after direct application of property 6 the result is

aaH ⊗
(

y ⊗ yH
)

. (A.4)

Substituting back in for y and applying property 6 again achieves the desired result,

aaH ⊗
[

(b⊗ c) (b⊗ c)H
]

= aaH ⊗
(

bbH ⊗ c⊗ cH
)

(A.5)

= aaH ⊗ bbH ⊗ ccH . (A.6)

The final simplification merely takes advantage of the column vector format used

throughout this report.
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Appendix B. Angular Scales

Many of the plots for radar work involve either an elevation or azimuth angular scale.

Although this scaling is not difficult to generate, there are some subtle nuances that

come about from its derivation. As always, the result of a Fourier transform is a

normalized scale that we must convert to angle, normalized Doppler, or whatever

coordinates are appropriate for the problem at hand. This appendix describes the

formulation of the angle scale used throughout this work.

First, consider the Discrete Fourier Transform (DFT) given by

W [k] =
P−1
∑

p=0

w[p]e−j2π
kp
P . (B.1)

In an ideal space/spatial analogy, this transform converts the spatial domain signal

w(p) to an angular domain signal W (k) based on ideal phase delays contained in the

term e−j2π
kp
P . The integer index k corresponds to a normalized spacing in the angle

domain, where each k is a single angle. As a quick test of the concept, consider a

signal boresight to the array or 0◦. This angle corresponds to an angular integer

index of k = 0. Substituting for k in the DFT expression, the baseband or zero

angle component within the angle domain is simply the summation of all the spatial

components. This result is exactly as expected since the phase front of the impinging

wave on the array is perfectly aligned with the array for 0◦.

Now extend the concept to incorporate the parameters within the radar and

processing models. When aligning the element returns in phase to correspond to

a particular angle, use a spatial steering vector (in either azimuth or elevation).

However, a spatial steering vector aligns the returns for a single angle. Given this

observation, a single steering vector essentially amounts to a column of the DFT

matrix or single instance of the index integer k. Now apply the elevation steering

vector of Eqn. (3.40) to an incoming data vector x containing complex samples from
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the P elements of an ideal vertical linear array to get eHx. From simple matrix

theory, this inner product can be also be represented as

X[k] =
P−1
∑

p=0

e∗[p]x[p]. (B.2)

The index integer k is introduced at this point to begin the analogy between the

steering vector and DFT. The next few steps derive exactly what k corresponds to

and eventually show the angular scale. Substitute for the steering vector components

to get

X[k] =
P−1
∑

p=0

x[p]e−j2πp
dz
λo

sin θk , (B.3)

where the k subscript on the elevation angle θ highlights the dependence. The

transformation looks suspiciously like a DFT! Rearrange to make it look exactly like

a DFT,

X[k] =
P−1
∑

p=0

x[p]e−j2π
p
P (

Pdz
λo

sin θk). (B.4)

Now, simply equate the parenthetic term with k to get the transformation from the

index space to the angle scale

k =
Pdz
λo

sin θk. (B.5)

Unfortunately, the development is not quite where it needs to be just yet.

Remember, k is an integer index scale. The idea is to convert the normalized angular

frequency scale to pure radar elevation angle. The DFT scale extends from 0 to 2π

and when normalized by π it extends 0, . . . , 2. Since k extends 0, . . . , P − 1, k can
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be converted to the normalized scale1 by multiplying by 2
P
,

2

P
k =

2dz
λo

sin θk. (B.6)

The quantity 2
P
k is simply a normalized axis scale from 0, . . . , 2. After an FFT shift,

it is equivalent to linspace(−1, 1− 1/P, P ). Hence, the axis scale becomes

θ = sin−1

[

λo
2dz

linspace(−1, 1− 1/P, P )

]

. (B.7)

The scale for azimuth and normalized Doppler is found using the same method.

B.1 Grating Lobes, Over Sampling, and Under Sampling

One of the most important points embedded within Eqn. (B.7) is a subtlety

regarding under and over sampling. Common knowledge states inter-element spacing

in the spatial domain should correspond to the half the wavelength. Substituting

this knowledge into the expression shows the expression collapses to

θ = sin−1 [linspace(−1, 1− 1/P, P )] . (B.8)

This case corresponds to ideal sampling; the signal is neither over or under sampled

spatially. As expected, the angular extent of the waveform is from ±90◦.

Now consider the case where the signal is over sampled. This case is commonly

considered a “good thing”. The mindset is always that more is better. Yet, this is not

always true. Use one quarter wavelength spacing and substitute into the expression,

θ = sin−1 [2 linspace(−1, 1− 1/P, P )] . (B.9)

1Zero padding is rarely done in adaptive processing techniques. The change would only be minor
in that P would be replaced by the zero padded length of the steering vector/incoming data vector.
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The argument of the inverse sin expression now extends beyond ±1 and the result is

complex for the values beyond ±1. Only the real valued portions of the expression

above are realized in the physical array. The expression is only valid from ±90◦ and

the result of over sampling is spreading the antenna pattern in angle. The main

beam is enlarged and perhaps even cut off if it is steered into the complex region.

The best explanation of this phenomenon is in view of sin-theta space as dis-

cussed in [60]. Consider Fig. B.1, where the main beam and grating lobes for the

MCARM array are shown in sin-theta space. The MCARM array, oriented in the x-z

plane, is under sampled in elevation (z-axis) and slightly over sampled in azimuth

(x-axis). The circle corresponds to the physically realized portions of the array pat-

tern, i.e., the real valued region. Outside the circle lies the complex valued region

where grating lobes exist but are not physically realized.

The black dots in the figure correspond to a main beam steered to 0◦ in both

elevation and azimuth. The center dot is the mainbeam, while all the other dots

are grating lobes and occur at multiples of λo
dx

along the x-axis and multiples of λo
dz

along the z-axis. For the ideally spatially sampled array, the black dots should all be

located at multiples of 2 since the interelement spacing would be half the wavelength.

If this were the case, the figure shows that no matter where the mainbeam is steered

within the circle, no grating lobes can exist (enter the circle), with the exception of

the endfire condition when there is actually a main beam at ±90◦.

Given the MCARM array, we see grating lobes can exist. For example, the

array is under sampled in elevation. When the beam is steered to 45◦ in elevation,

a grating lobe enters the circle and is realized, as shown by the x’s in the figure.

This essentially amounts to two main beams in elevation. Conversely, the array is

over sampled in azimuth (along the x-axis). No matter where the beam is steered

within the circle, no grating lobes can enter and become realized. However, there is

a second issue to consider. The antenna pattern is essentially stretched; only that

portion lying within the circle is realized. Therefore, the physically realized pattern
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is stretched and then clipped at the real-complex circle boundary. If the mainbeam

is steered outside the circle, there will be no realized mainbeam.
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Figure B.1: Sin-theta space for the MCARM array interele-
ment distances.
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Appendix C. SNR and Power Calculations

In determining the target SNR, several definitions must be examined and related to

the previous work. First, consider the receiver structure shown in Fig. C.1 for each

element. The goal is to determine the target SNR on a per element, per pulse basis

since the matched filtering operation is on a pulse-by-pulse basis.








PSfrag replacements

e−j2πfot

H(w)

Matched Filter

A/D
xnp(k)xnp(t)

BPF

Figure C.1: The simplified receiver structure for each array
element illustrates the down conversion to IF/baseband and the
bandpass filter for optimum SNR. ADC is an analog to digital
converter.

C.1 Target Power

The received signal on a per element basis was derived in Chapter III and

shown in Eqn. (3.9),

s̃np(t) = aru(t− τnp)ej2πfo(t−τnp)ej2πft(t−τnp)ejϕ. (C.1)

This expression corresponds to the signal received at the element before any mixing

or filtering operations. After down conversion, the received signal becomes (see

Eqn. (3.28))

s̃np(t) = aru(t− τt)ej2πfttej2π(nϑx+pϑz)ejϕ. (C.2)

IF is assumed baseband as before. A note is in order regarding the use of com-

plex envelope notation in the development. The actual transmitted waveform is real

valued, derived analytically from the given complex expression above by taking the
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real part. This operation results in the signal becoming a cosine term which, after

down conversion/mixing to baseband, leaves two components each weighted in am-

plitude by a factor of 1
2
. We have assumed a filter is in place to remove the upper

frequency component and leave only the baseband portion within this development.

The bandwidth of this filter is assumed large enough that all signal power passes

through. However, a factor of two resulting from the trigonometric identity for a

product of two cosines is omitted when using the complex envelope notation. The

complex notation above is generated within the radar receiver by sampling in-phase

and quadrature components of the real valued received waveform, i.e., the I and Q

components.

The parameter of interest is the target signal power per element per pulse. The

expression already gives the voltage waveform per element, however it still contains

all the pulses. Substituting in for the pulse train,

s̃np(t) = ar

M−1
∑

m=0

up(t− τt −mTr)ej2πft(t−mTr)ej2π(nϑx+pϑz)ejϕ, (C.3)

then allows picking off a single pulse. The voltage for pulse zero (m = 0) is then

s̃np(t) = arup(t− τt)ej2πft(t−mTr)ej2π(nϑx+pϑz)ejϕ. (C.4)

Notice that this is not the output of the matched filter as developed in Chapter III.

C.1.1 Instantaneous Power, Average Power, and Total Power. Essentially,

there are three different forms of power that can be addressed. The development to

this point generated an expression for the voltage on a per element basis, given by

the previous equation. Using the common normalization of the power to a resistive

value of one, the instantaneous power is simply the voltage magnitude squared or

p(t) = a2ru
2
p(t− τt). (C.5)
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Interestingly, the signal of interest is classified as an energy signal. In other

words, the received signal has finite non-zero energy but zero average power [57].

This classification is evidenced by the previous definition in Eqns. (3.5) and (3.6),

where the energy in a single transmitted pulse was defined such that it was all

captured in a2t . Using this definition, all of the energy in the received pulse is then

captured within a2r,

Er =

∫ Tp+τt

τt

a2ru
2
p(t− τt)dt = a2r. (C.6)

Notice that this development assumes a deterministic, non-periodic returned

target signal. For the purposes of injecting a target within the data set, this approach

is sufficient for target SNR calculations based on the injected target amplitude ar.

However, an actual target signal would be random. This signal would be classified as

a power signal and the power spectral density would be calculated using the Fourier

transform of its autocorrelation function.

For the purpose of calculating the target power, the total power is used. The

total power of the signal can be found by integrating the instantaneous power p(t)

across all time. However, this approach neglects the bandwidth of the receiver.

More appropriate for this application is first obtaining the Fourier transform of

the received signal and then integrating the squared magnitude over the receiver

bandwidth. Assuming a bandwidth of 1
Tp

at baseband, the total received power for

the injected target is

Pt =

∫ 1
Tp

− 1
Tp

|F {s̃np(t)}|2 df, (C.7)

where F {·} represents the Fourier transform operator. Substituting for the Fourier

transform of a rectangular pulse and simplifying gives

Pt = a2r

∫ 1
Tp

− 1
Tp

T 2
p sinc

2 (fTp) df. (C.8)
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One approximation was applied in generating the above result. The target Doppler

shift ft merely amounts to a convolution in the frequency domain with a delta func-

tion. This convolution would result in a frequency translation/shift but, since ft

is considered small relative to the bandwidth of the signal, this frequency shift is

negligible and the Doppler term is therefore ignored. The time delay τt (associated

with the range of the target) in the unit energy pulse, up(t − τt), is just a complex

exponential term after the Fourier transform. Since this term is merely a phase term,

it falls out when the magnitude is taken. The integral term is approximated by [62]

∫ 1
Tp

− 1
Tp

Tpsinc
2 (fTp) df ≈ 0.903. (C.9)

Therefore, the total signal power per element per pulse that made it through the

receiver bandwidth is

Pt ≈ 0.903a2rTp. (C.10)

C.2 Noise Power

The noise is considered a random quantity, specified by its Power Spectral

Density (PSD) No
2
. As developed in Chapter III, the receiver noise is modeled as

purely white, meaning it has infinite frequency extent. Therefore, the total receiver

noise power is determined as the integral over the receiver bandwidth,

Pn =
No

2

∫ 1
Tp

− 1
Tp

df (C.11)

or simply

Pn =
No

Tp
= NoB. (C.12)
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C.3 Target SNR

The target SNR is simply the total target power referenced to the total noise

power. Using the previously derived expressions, this ratio becomes

SNR =
Pt
Pn
≈

0.903a2rT
2
p

No

. (C.13)

C.4 Target SINR

The target SINR includes the effects of interference and noise. For the purposes

of this report, this quantity is calculated as derived in this section.

Both the clutter and jammer received amplitudes are considered random quan-

tities. From the definitions given in the data model developed in Chapter III, the

JNR and CNR on a per element per pulse basis were defined as

ξj =
Jo
No

(C.14)

and

ξik =
PtGt (θi, φk) g (θi, φk)λ

2
oσik

(4π)3NoBLsR4
i

, (C.15)

respectively (as shown in Eqns. (3.82) and (3.103)). The CNR shown above pertains

to a single patch. To get the entire CNR on each element and each pulse, the quantity

must be summed across all patches in the range ring (and ambiguous range rings).

This requires the double summation shown in

ξc =
Nc
∑

i=1

Nr
∑

k=1

PtGt (θi, φk) g (θi, φk)λ
2
oσik

(4π)3NoBLsR4
i

. (C.16)
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The total clutter and jammer powers are then found by multiplying the JNR and

CNR by the noise power,

ξjNoB = Jo (C.17)

ξcNoB =
Nc
∑

i=1

Nr
∑

k=1

PtGt (θi, φk) g (θi, φk)λ
2
oσik

(4π)3 LsR4
i

. (C.18)

From these two quantities, the SINR definition simply becomes

SNR =
Pt

Pn + Jo + ξcNoB
≈

0.903a2rT
2
p

No + Jo + ξcNoB
. (C.19)
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